An overview of the Winter Precipitation Type Research Multi-scale Experiment (WINTRE-MIX)

Justin R Minder1, N. Bassill1, J.R. French2, K. Friedrich3, D.E. Kingsmill3, C. Nguyen1, L. Nichman4, and A.C. Winters3

1. University at Albany, Albany, NY
2. University of Wyoming, Laramie, WY
3. University of Colorado Boulder, Boulder, CO
4. National Research Council Canada, Ottawa, ON, Canada

Overview

Goal: To better understand how multi-scale processes influence the variability and predictability of precipitation type (p-type) and amount under near-freezing surface conditions.

Basic science questions:
- How do mesoscale dynamics modulate near-freezing precipitation?
- How do microscale processes modulate near-freezing precipitation?
- How do multi-scale processes combine to determine the predictability of near-freezing precipitation?

Broader impacts:
- Improved and better-leveraged observations & diagnostics
- Improved and better-leveraged numerical forecasts
- Improved communication between stakeholders, forecasters, researchers
- Educational opportunities through field work, outreach, and citizen science

Approach:
- A focused field campaign to address the above goal and questions
- Time period: 1 Feb – 15 Mar 2022
- Region: Northern New York and southern Quebec
 - Frequent near-freezing precipitation and varied p-types. Events of major societal impact.
 - Important small-scale terrain influences (St. Lawrence River, L. Champlain Valley)
 - Strong backbone of existing observational networks: New York State Mesonet (NYSM; Brotzge et al. 2020), Canadian Fund for Innovation Climate Sentinel (CFICS) mesonet in Canada, operational weather radars.
 - Collaboration with Canadian colleagues, operational agencies (NWS, ECCC), private sector, partner projects (FAA-TAI/WIN, NASA-IMPACTS), citizen science (CoCoRaHs, mpING)

Mesoscale modeling
- Observations will be used to evaluate and constrain high-resolution NWP
- Numerical experiments will be used to examine specific physical processes, including roles of terrain features, ice nuclei, small-scale turbulence
- Ensemble experiments (IC/BC perturbations, stochastic physics) will be used to investigate how various uncertainties (e.g., cloud physics, turbulence, large-scale atmospheric circulation) affect p-type predictability

Learn more and get involved!
- Check out our webpage (https://www.eol.ucar.edu/field_projects/wintre-mix
- View observations on our field catalog (https://catalog.eol.ucar.edu/wintre-mix
- Follow us on social media (https://twitter.com/WINTRE_MIX
- Collect observations via mpING (https://mping.nssl.noaa.gov/)

Field observations

- Convair and mobile radars
- Other ground-based observations

Mobile Doppler radars
- From U. Illinois FARM
- 2 X-band “DOW” radars
- Deployed at flexible locations near Plattsburgh, NY and Montreal, QC
- 1 C-band “COW” radar
- Dual-polarization, dual-frequency
- Deployed at fixed location in Quebec

Research aircraft
- National Research Council of Canada Convair-580
- Rich array of in situ thermodynamics & microphysics probes
- Aerosol sensors
- Profiling radar and lidar
- Well suited for operations in icing conditions
- Based in Ottawa, Canada
- 60 flight hours (about 10-11 research flights)

Advanced surface stations
- Built on backbone of advanced NYSM and CFICS networks.
- Advanced sensors include:
 - Profiling radars (X-, X-band), lidars, radometers
 - Shielded weighing & hot-plate precip. gauges, sonic snow depth sensors
 - Icing detectors
 - Optical disdrometers
 - Surface flux measurements

Soundings and manual observations
- 4 teams launching soundings in St. Lawrence and Champlain Valleys (~70 sondes each)
- Manual observations of hydrometeor type, snow accumulation, ice accretion
- Hydrometeor macrophotography