IMPACTS: Investigation of Microphysics and Precipitation in Atlantic Coast-Threatening Snowstorms:

Lynn McMurdie, Pl University of Washington

Science Team:

Deputy PIs: Gerald Heymsfield and John Yorks, NASA Goddard Co-Is: Bob Rauber UIUC, Brian Colle SBU, Sandra Yuter NCSU, Matt-Kumjian PSU, Dave Delene UND, Greg McFarquhar OU, Andy Heymsfield NCAR Instrument PIs and others: NASA Goddard, NASA Langley, NASA

Marshall

WINTRE-MIX Science Team Meeting 13 – 14 December 2021

lynnm@uw.edu

IMPACTS is investigating snowbands in East Coast Snowstorm

Science Goals

 Characterize spatial and temporal scales and structures of snowbands

IMPACTS

- Understand the dynamical, thermodynamical and microphysical processes that control snowbands
- Apply this understanding to remote sensing and modeling of snowfall

IMPACTS Observational Strategy: Aircraft coordination

ER-2: Satellite-simulating, high altitude with passive and active remote sensing instruments **P-3:** In situ microphysical instrumentation, flight level environmental measurements and dropsondes Ground: Radiosonde launches, NY mesonet observations, mobile

mon2 ground radars and a fixed site with radars and other instruments

IMPACTS: ER-2 Aircraft Instrumentation for 2020 and 2022

Instrument PI/Organization	Instrument Characteristics	Derived Data Products	
Advanced Microwave Precipitation Radiometer (AMPR) - T. Lang/ MSFC	Cross-track scanning microwave radiometer at 10, 19, 37, 85 GHz	Precipitation characteristics, path integrated LWC and IWC	
Cloud Physics Lidar (CPL) - M. McGill/GSFC	Attenuated backscatter at 355, 532, 1064 nm; volume depolarization ratio at 1064 nm	Cloud/aerosol layer boundaries, cloud/aerosol optical depth, extinction, and depolarization; detection of cloud phase at cloud top	
Cloud Radar System (CRS) - M. McLinden/GSFC	<u>W-band</u> nadir-pointing Doppler radar with minimum detectable threshold of –30 dBZ @ 10 km altitude; Linear Depolarization	Vertical velocity, precipitation rates, phase, hydrometeor size, various vertical profile characteristics	
Conical Scanning Millimeter-wave Imaging Radiometer (CoSMIR) - R. Kroodsma/GSFC	Conical and/or Cross-track scanning passive microwave radiometer at ~50, 89, 165.5, & 183 GHz	Precipitation characteristics, path integrated LWC and IWC	
ER-2 X-Band Doppler Radar (EXRAD) - G. Heymsfield/GSFC	<u>X-band</u> nadir & conical scanning Doppler radar with minimum detectable threshold of –12 dBZ /-3 dBZ (nadir/scanning) @ 10 km range	Vertical velocity, precipitation rates, phase, hydrometeor size, various vertical profile characteristics, horizontal winds	
High-altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) - L. Li/GSFC	<u>Ku- and Ka-band</u> nadir-pointing Doppler radars with minimum detectable threshold of –10 dBZ (Ku) and –12 dBZ (Ka) @ 10 km altitude; Linear Depolarization	Vertical velocity, precipitation rates, phase, hydrometeor size, various vertical profile characteristics	
Lightning Instrument Package (LIP) - C. Schultz/MSFC	Electric Field	Vector electric field and changes due to lightning occurrence	

Radiometers: AMPR CoSMIR

Radars: CRS (W-band) HIWRAP (Ka- Ku-band) EXRAD (X-band, conical scanning)

Lidar: CPL

Lightning detector LIP

IMPACTS: P-3 Aircraft Instrumentation for 2022

Instrument -PI/Organization	Instrument Characteristics	Derived Data Products
Turbulent Air Motion Measurement System (TAMMS) - K. Thornhill/LaRC	In-situ measurement systems designed to acquire high-frequency state parameters	Flight level 3D-wind vector, temperature, humidity
Advanced Vertical Atmospheric Profiling System (A) - K. Thornhill/LaRC	Expendable GPS-tracked device dropped from aircraft to measure in-situ profiles	Vertical profiles of pressure, temperature, relative humidity, and winds
Cloud-Droplet Probe (CDP) - M. Poellot/ UND	Particle samples in 2-50 μm size range	Concentration and size distribution of cloud droplets
Particle Habit Imaging and Polar Scattering (PHIPS) - M. Schnaiter/KIT	High resolution particle information up to ~700 μm size range	2D particle images, Single particle phase discrimination and particle size distribution up to ~700 μm size range
2D-Stereo Probe (2DS) - M. Poellot/UND	Particle samples in 10 μm to 3 mm size range	Droplet, Ice Particle Size Distributions, 3D particle images
High-Volume Precipitation Spectrometer-3 (HVPS-3) - M. Poellot/UND	Particle samples in 150 μm to 10 cm size range	Droplet, Ice Particle Size Distributions, 2D projections of 3D particle images
WCM-2000	Cloud liquid and total condensate up to 2 g m ⁻³	Liquid & Ice Water Content
King Probe - M. Poellot/UND	Liquid water probe, up to 2 g m ⁻³ , for cloud droplet sizes of 2-30 μm	Liquid Water Content
Hawkeye Probe - M. Poellot/UND	Multi-probe sensor (FastCDP, 2DS, CPI)	Droplet, Ice Particle Size Distributions, 3D particle images
Rosemont Icing Detector (RICE) - M. Poellot/UND	Supercooled liquid water measurements in excess of 0.01 g m ⁻³	Presence and approximate amount of supercooled liquid water
Water Isotope System for Precipitation and Entrainment Research (WISPER) - D. Toohey/U. Colo	Total Ice measurements up to 2 g m ⁻³	Cloud particle concentration, condensate mass, water vapor, ice water content
Vapor In-cloud Profiling Radar (VIPR)	In cloud water vapor content	

Water vapor 0.001 – 25 g/kg of water vapor

High Altitude Lidar Observatory (HALO)

CDP **PHIPS** 2DS**HVPS** WCM-2000 King Hawkeye (Fast CDP, 2DS, CPI) RICE **WISPER**

Environment: TAMMS **AVAPS**

Extra:			
VIPR			
HALO			

Profiles of water vapor mixing ratio and profiles of

allola allo allo allo and a second

IMPACTS: Ground Operations for 2022

Instrument - PI/Organization	Location	Measurement Details	Rawinsondes:
Mobile rawinsondes - Lead by UIUC, SBU and Millersville		UIUC out of Binghamton, SBU out of Stony Brook, also fixed	- 3 mobile teams (UIUC out of Binghamton,
Fixed NOAA rawinsondes J. Walstreicher (lead)/NWS	Fixed NWS sounding locations		SBU and Millersville)
Pluvio2 P. Kollias/SBU	SBU	Weighing gauge 1 min frequency	SBU (fixed) NWS
KASPR P. Kollias/SBU	SBU	VPT, PPI, and RHI measurements by Ka-band scanning polarimetric radar at high temporal and spatial resolutions	
ROGER P. Kollias/SBU	SBU	W-band profiling radar, 4 s and 30 m resolutions	Ground Radars
MWR P. Kollias/SBU	SBU	microwave radiometer measuring liquid water path	SBU site Mobile: SKYLER (SBU)
Parsivel P. Kollias/SBU	SBU/Mobile truck	Optical disdrometer PSD	Mobile: RaXPOL (SUNY
MRR P. Kollias/SBU	SBU/Mobile truck	Vertically pointing K-band profiling radar (4 s, 60 m resolutions)	Albany, from OU)
Ceilometers P. Kollias/SBU	SBU/Mobile truck	Profiling lidar backscatter 15 s, 10-60 m resolution	
SKYLER P. Kollias/SBU	SBU/Mobile truck	X-band phased array radar	 Surface Networks: NY Mesonet
RaXPOL H. Bluestein/OU	OU/Mobile truck based out of SUNY Albany	X-band phased array radar	Ground Site at UConn
WFF PIP, MRR, Pluvio, Parsivel, Wolff/WFF	Storrs, CN Uconn and at Wallops	Precipitation amount, PSD, K-band vertically pointing radar	provided by D. Wolff (GPM GV)
NYS Mesonet J. Brotzge/ SUNY Albany	NY State various locations	Surface observations 1 min frequency. Profiling stations	Ground Site at Wallops
			(GPM GV)

IMPACTS

IMPACTS: First Deployment January – February 2020

Maps data: Google Landsat / Copernicus Data SIO, NOAA, U.S. Navy, NGA, GEBCO INEGI Data LDEO-Columbia, NSF, NOAA

We go where the storms are

P-3 Flights: 10 Missions

ER-2 Flights: 9 Missions

Coordinated Flights: 5

Multiple storm events were sampled in the NE (mainly over NY and New England) and 2 over the Midwest near Illinois.

Operations Timeflow

- 2022 operations: January 10 February 28, 2022.
- Daily weather briefings 9am (afternoon updates on as needed basis)
- Flight plans submitted to ATC ~48 hr prior to planned flight, sounding and mobile radar operations also communicated same time
- Go/No Go decision at TO-3hr
- Adjustments made up to Take Off time, flight legs can be somewhat adjusted in real time – often request flight elevations in realtime. In constant communication with aircraft who then communicates to ATC about next flight leg location/elevation
- Have 2 people in ops center who communicate with the pilots and ATC to facilitate the coordination between aircraft
- Flights monitored with MTS2 software and Chat function used to communicate with Pilots (also sat phone)

Example from our dry run of operations if coordinating with WINTRE-MIX –27 Feb 2021

- Forecast of 'wintry-mix' to approach WINTRE-MIX operations area over Champlain and then St. Lawrence Seaway
- Take off time: ~1400 UTC 27 Feb ER-2
- Overview: perform ER-2 P-3 and Convair stack legs either N-S along Champlain and/or over St. Lawrence (Coordinate with WINTRE-MIX)
- Leg length ~150 km ER-2 (shorter P-3)
- P-3 altitudes: start high near generating cell level, then descend to -15°C at 5°C intervals
- Try to get 4 legs in ~<= 2 hours
- Then repeat (either same location or to St. Lawrence).
- Soundings: Move UIUC team to north of Albany and south of WINTRE-MIX. NWS extra KALB soundings.

Example Operations if coordinating with WINTRE-MIX – Example from our Dry Run

- P-3 Dropsonde just south of Long Island
- P-3 passes over SBU heading north
- P-3 arrives just below cloud top and starts first stack over Champlain
 Valley or continue to St. Lawrence depending on how storm develops
- Stack legs over Champlain (~150 km in length for ER-2

Example Operations if coordinating with WINTRE-MIX – Example from our Dry Run

- 2nd Stack of legs over St. Lawrence by ~1800 UTC 27 Feb 2021
- ER-2 returns home after the stack (4?)
- Spiral over St. Lawrence for P-3?

IMPACTS Overview

- Microphysics and the second se
- IMPACTS is investigating snowband structures in East Coast snowstorms
- Flying 2 aircraft in coordinated flight legs: ER-2 (remote sensing instruments) and P-3 (in situ microphysics)
- Aircraft operations can be anywhere from the Midwest to offshore Atlantic
- Have ground assets at SUNY Stony Brook, UConn
- Have 2 mobile X-band phase array radars (RaXPOL only during February 2022)
- Have 3 mobile sounding teams, one based out of Binghamton NY, one out of SBU and the 3rd at Millersville

IMPACTS Overview continued

- Daily briefings 9am and updates in afternoon as needed
- Flight plans submitted ~48 hours in advance, adjustments up to during flight
- Have Field Catalog: <u>http://catalog.eol.ucar.edu/impacts_2022/</u> and ESPO website for IMPACTS: <u>https://espo.nasa.gov/impacts/</u>
- Data available on the GHRC NASA DAAC: <u>http://ghrc.nsstc.nasa.gov/</u> and doi: <u>http://dx.doi.org/10.5067/IMPACTS/DATA101</u>