Precipitation as a driver of cloud droplet concentration variability along 20°S

Robert Wood University of Washington Dave Leon and Jeff Snider, University of Wyoming

Photograph: Tony Clarke, VOCALS REx flight RF07

Radiative impact of cloud droplet concentration variations

George and Wood, Atmos. Chem. Phys., 2010

Aerosol (D>0.1 μm) vs cloud droplet concentration (VOCALS, SE Pacific)

MODIS-estimated mean cloud droplet concentration N_d

- Use method of Boers and Mitchell (1996), applied by Bennartz (2007)
- Screen to remove heterogeneous clouds by insisting on CF_{liq} >0.6 in daily L3

Prevalence of drizzle from low clouds

DAY

NIGHT

Drizzle occurrence = fraction of low clouds (1-4 km tops) for which Z_{max} > -15 dBZ

Leon et al., J. Geophys. Res. (2008)

Simple CCN budget in the MBL

$$\dot{N} = \left[\dot{N}\right]_{ent} + \left[\dot{N}\right]_{sfc} + \left[\dot{N}\right]_{coal} + \left[\dot{N}\right]_{ary \, dep}$$

 ≈ 0

Model accounts for:

- Entrainment
- Surface production (sea-salt)
- Coalescence scavenging
- Dry deposition

Model does not account for:

- New particle formation significance still too uncertain to include
- Advection more later

Production terms in CCN budget

Loss terms in CCN budget: (1) Coalescence scavenging

Steady state (equilibrium) CCN concentration

$$N_{eq} = \frac{\left(N_{FT} + \frac{\beta U_{10}^{3.41}}{Dz_i}\right)}{\left(1 + \frac{hkP_{CB}}{Dz_i}\right)}$$

$$w_{\rm e}/z_{\rm i} = D = {\rm surface \ divergence}$$

Observable constraints from VOCALS and A-Train

$$N_{eq} = \frac{\left(N_{FT} + \frac{\beta U_{10}^{3.41}}{Dz_i}\right)}{\left(1 + \frac{hkP_{CB}}{Dz_i}\right)}$$

Variable	Source	Details
N _{FT}	Weber and McMurry (1996) & VOCALS in-situ observations (next slide)	150-200 cm ⁻³ active at 0.4% SS in remote FT
D	ERA-40 Reanalysis	divergent regions in monthly mean
<i>U</i> ₁₀	Quikscat/Reanalysis	-
P _{CB}	CloudSat	PRECIP-2C-COLUMN, Haynes et al.
	VOCALS (WCR and in-situ)	(2009) & Z-based retrieval
h	MODIS	LWP, adiabatic assumption
Zi	CALIPSO or MODIS or COSMIC	MODIS T _{top} , CALIPSO z _{top} , COSMIC hydrolapse

Free tropospheric CCN source

Self-preserving aerosol size distributions

• after Friedlander, explored by Raes:

Raes et al., J. Geophys. Res. (1995)

Precipitation over the VOCALS region

Predicted and observed N_d, VOCALS

 Model increase in N_d toward coast is related to reduced drizzle and explains the majority of the observed increase

•Very close to the coast (<5°) an additional CCN source is required

•Even at the heart of the Sc sheet (80°W) coalescence scavenging halves the N_d

•Results insensitive to sea-salt flux parameterization

Mean precipitation rate (CloudSat, 2C-PRECIP-COLUMN, Stratocumulus regions)

Predicted and observed N_d

• Monthly climatological means (2000-2009 for MODIS, 2006-2009 for CloudSat)

• Derive mean for locations where there are >3 months for which there is:

(1) positive large scale div.
(2) mean cloud top height <4 km
(3) MODIS liquid cloud fraction > 0.4

• Use 2C-PRECIP-COLUMN and Z-R where 2C-PRECIP-COLUMN missing

Reduction of *N*_d **from precipitation sink**

• Precipitation from midlatitude low clouds reduces N_d by a factor of 5

1000 2000 %

• In coastal subtropical Sc regions, precip sink is weak

But what controls precipitation?

- Precipitation rates P_{CB} scale approximately with LWP^{1.5} and N_d⁻¹ (e.g. Pawlowska and Brenguier 2003, Comstock et al. 2004, VanZanten et al. 2005)
- LWP^{1.5} increases by a factor of ~2.2 from 72.5°W to 82.5°W, while N_d decreases by a factor of 2.5 (Bretherton et al. 2010)
 - \Rightarrow LWP and N_d influence the zonal gradient in precipitation rate along 20°S in approximately equal measure
 - \Rightarrow significant positive feedback on N_d through aerosol-driven precipitation suppression; $N_d^{\uparrow} \Rightarrow P_{CB}^{\downarrow} \Rightarrow N_d^{\uparrow}$
- But see Chris Terai's poster on precipitation susceptibility

Conclusions

- Simple CCN budget model, constrained with VOCALS observations predicts observed gradients in cloud droplet concentrations with some skill. FT aerosol significant possible source west of 75°W.
- Significant fraction of the variability in N_d across regions of extensive low clouds (from remote to coastal regions) is likely related to precipitation sinks rather than source variability. Implications for VOCALS Hypothesis H1c :
 - The small effective radii measured from space over the SEP are primarily controlled by anthropogenic, rather than natural, aerosol production, and entrainment of polluted air from the lower free-troposphere is an important source of cloud condensation nuclei (CCN)
- It may be difficult to separate the chicken from the egg in correlative studies suggesting inverse dependence of precipitation rate on cloud droplet concentration. Implications for Hypothesis H1a:
 - Variability in the physicochemical properties of aerosols has a measurable impact upon the formation of drizzle in stratocumulus clouds over the SEP.

Sea-salt source strength compared with entrainment from FT

Precipitation closure

- Precipitation rate dependent upon:
 - cloud macrophysical properties (e.g. thickness, LWP);
 - **microphysical** properties (e.g. droplet conc., CCN)

Pawlowska and Brenguier (in-situ aircraft) precipitation rate at cloud base [mm/day] .0 10 00 00 van Zanten et al. (in-situ aircraft + radar drizzle) O Comstock et al. (radiometric + radar drizzle) 0 RCO ANINO 0.01 10.0 0.10 1.0 h^{3}/N_{d} [m⁶]

from Brenguier and Wood (2009)

A proposal

- A limited area perturbation experiment to critically test hypotheses related to aerosol indirect effects
- Cost ~\$30M

Precipitation susceptibility

 Construct from Feingold and Siebert (2009) can be used to examine aerosol influences on precipitation in both models and observations

$$S = -(dln R_{CB}/dln N_a)_{LWP,h}$$

- S decreases strongly with cloud thickness
- Consistent with increasing importance of accretion in thicker clouds
- Consistent with results from A-Train (Kubar et al. 2009, Wood et al. 2009)

Data from stratocumulus over the SE Pacific, Terai and Wood (Geophys. Res. Lett., 2011)

Effect of variable supersaturation

• Kaufman and Tanre 1994

- Range of observed and modeled CCN/droplet concentration in Baker and Charlson "drizzlepause" region where loss rates from drizzle are maximal
- Baker and Charlson source rates

Baker and Charlson, Nature (1990)

Timescales to relax for N

Entrainment:

Surface: $\tau_{sfc} \sim Nz_i / \beta U_{10}^{3.4}$ Precip: $z_i / (hKP_{CB}) = 8x10^5 / (3*2.25) = 1$ day for $P_{CB}=1 \text{ mm day}^{-1}$ $\tau_{dep} \sim z_i / w_{dep}$ - typically 30 days

Can dry deposition compete with coalescence scavenging?

 w_{dep} = 0.002 to 0.03 cm s⁻¹ (Georgi 1988) K = 2.25 m² kg⁻¹ (Wood 2006)

For $P_{CB} = > 0.1 \text{ mm day}^{-1} \text{ and } h = 300 \text{ m}$

$$\frac{\left[\dot{N}\right]_{coal}}{\left[\dot{N}\right]_{dry\,dep.}} = 3 \text{ to } 30$$

For precip rates > 0.1 mm day⁻¹, coalescence scavenging dominates

• Examine MODIS Nd imagery – fingerprinting of entrainment sources vs MBL sources.

Cloud droplet concentrations in marine stratiform low cloud over ocean

Latham et al., Phil. Trans. Roy. Soc. (2011)

Baker and Charlson model

- CCN/cloud droplet concentration budget with sources (specified) and sinks due to drizzle (for weak source, i.e. low CCN conc.) and aerosol coagulation (strong source, i.e. high CCN conc.)
- Stable regimes generated at point A (drizzle) and B (coagulation)
- Observed marine CCN/N_d values actually fall in unstable regime!

Baker and Charlson model

- Stable region A exists because CCN loss rates due to drizzle increase strongly with CCN concentration
 - In the real world this is probably not the case, and loss rates are ~constant with CCN conc.
- However, the idea of a <u>simple</u> CCN budget model is alluring

Mean precipitation rate (2C-PRECIP-COLUMN)

Sea-spray flux parameterizations

Courtesy of Ernie Lewis, Brookhaven National Laboratory

MODIS-estimated cloud droplet concentration N_d, VOCALS Regional Experiment

Conceptual model of background FT aerosol

Clarke et al. (J. Geophys. Res. 1998)

Observed MBL aerosol dry size distributions (SE Pacific)

Tomlinson et al., J. Geophys. Res. (2007)

Predicted and observed N_d - histograms

Loss terms in CCN budget: (2) Dry deposition

$$\begin{bmatrix} \dot{N} \end{bmatrix}_{dry \, dep.} = -N \frac{W_{dep}}{Z_i} \sum_{\text{Deposition velocity}}$$

 w_{dep} = 0.002 to 0.03 cm s⁻¹ (Georgi 1988) K = 2.25 m² kg⁻¹ (Wood 2006)

For $P_{CB} = > 0.1 \text{ mm day}^{-1} \text{ and } h = 300 \text{ m}$

$$\frac{\left[\dot{N}\right]_{coal}}{\left[\dot{N}\right]_{dry \, dep.}} = 3 \text{ to } 30$$

For precip rates > 0.1 mm day⁻¹, coalescence scavenging dominates

Precipitation over the VOCALS region

