PBL variability in the SEP during VOCALS-REx and its connection to synoptic and planetary scales

Thomas Toniazzo S. Abel, R. Wood, C.R. Mechoso, G. Allen and L.C. Shaffrey

Miami 22/3/2011

Toniazzo et al. (2011) on synoptic variability during VOCALS -REx

- Hic-up with type-set version currently on-line on ACP: revisions which were made in response to editor's comments are included in the first AC.
- Reviewers seem seriously confused as to the paper's scope and contents, and don't seem to have absorbed much of it
- The length and complexity of the manuscript may well be partly to blame, so we're working on improving its organisation and readability.

Atmos. Chem. Phys. Discuss., 11, 1–64, 2011 www.atmos-chem-phys-discuss.net/11/1/2011/ doi:10.5194/acpd-11-1-2011 © Author(s) 2011. CC Attribution 3.0 License.

This discussion paper is/has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP if available.

Large-scale and synoptic meteorology in the South-East Pacific during the observations campaign VOCALS-REx in Spring 2008

T. Toniazzo¹, S. J. Abel², R. Wood³, C. R. Mechoso⁴, G. Allen⁵, and L. C. Shaffrey¹

¹NCAS, University of Reading, UK
²Met Office, Exeter, UK
³University of Washington, Seattle, USA
⁴UCLA, Los Angeles, USA
⁵NCAS, University of Manchester, UK

Received: 30 November 2010 - Accepted: 19 December 2010 - Published:

Correspondence to: T. Toniazzo (t.toniazzo@reading.ac.uk)

Published by Copernicus Publications on behalf of the European Geosciences Union.

The average circulation and MBL conditions in the SEP during October-November 2008 Partly based on

Partly based on measurements, with a general discussion of the variability during the period of observations

Day-to-day synopticscale flow during VOCALS-REx

PMSL and 500hPa GPH overlaid on false-color images of differences between GOES East channel-5 BT and OSTIA SSTs, with thresholds applied to highlight (near) cloud-free areas and Ci cover.

Description of the synoptic condition nearly day-by-day, by typical (sub-)synoptic systems, and summary subdivision into three periods of different general character.

Time-latitude Hovmueller diagram for open-ocean area (80W-85W)

Lowertropospheric thickness and cloudcover

Back-trajectories

From points in the FT along 20S "just" (200-400m) above the inversion. ECMWF operational data (ERA-Interim has also been used).

PBL and cloud cover in the UKMO forecast model.

Different periods characterised by different amount of mean cloud cover and its variability where observed

The UKMO operational forecast model gives a useful representation of the observed Sc inversion over maritime areas.

Discussing the <u>observed link</u> between synoptic forcing and Sc cloud...

...via the changes/variability in the inversion height (aka "MBL depth"); whereby positive changes in Hinv are generally accompanied by negative changes in cloud-cover over sufficiently large regions.

→ what affects H_{inv}? → how is it linked with c.-c.?

The circulation anomalies associated with changes

Synoptic-scale cyclonic and anticyclonic features, most prominent in period 1, but also active at the beginning and towards the end of period 2.

Sub-synoptic and planetary scales also contribute.

Period 3 has a persistent planetaryscale cyclonic circulation anomaly.

Characteristics of the Sc inversion

Preferred location for the inversion:

- Entrainment equilibrium favours $\Delta \theta w \sim 0$
- •The point $\Delta \theta w=0$ sinks as the FT warms, or the PBL cools (adiabatic displacements in the vertical have the opposite effect)
- •PBL temperatures are tied to SSTs.

23/10/08 00Z 81W-79W

6000

5000

4000

3000

2000

1000

- •A reduction in FT temperature is thus accompanied by a rising of the inversion.
- This reasoning also gives a preferred scaling for equilibrium: LCA ~ q*[θPBL,pi]

Dynamic lofting of the inversion can cause the cloud layer to decouple, cut off its PBL moisture supply, and be mixed away.

The surface intensification of FT disturbances

Changes in Hinv result in a PMSL signal correlated with FT disturbances s.a. cyclones and fronts.

Evolution of the circulation and of the SEP PBL inversion during Oct-Nov 2008

 Period I: high mean cloud cover near the coast, moderate to low in the maritime area (80W-90W, 15S-25S, used as a reference also in subsequent plots). The height, slope and strength of the inversion is moderate.

• Period II: very high cloud cover over maritime area and near the Chilean coast; low, flat, strong inversion.

 Period III: low c.c., and progressively less later. Weak inversion, and high, with large SW-NE gradient.

The planetary-scale troughing at the end of November_{Oct 1-15} (a) Oct 1-15 anomalies

The large scale (summary)

- Although the tropics-wide conditions resembles a weak La-Niña phase, SST in and near the VOCALS-REx area where very close to the 1990-2010 climatology.
- Over the VOCALS-REx period, the progression of the seasonal cycle meant that the southern storm-track moved polewards, while the subtropical anticyclone weakened, cloud-cover decreased, and SST and upward surface fluxes rose.
- This evolution was not continuous, but was marked by a transition in which the movement of the storm track together with the establishment of Indo-Pacific wide teleconnections brought a persistent cyclonic anomaly over the SEP which characterised period 3.
- Convective activity in the west-Pacific associated with a positive phase of the MJO was instrumental in establishing the planetary-scale pattern of period 3.

Further work

- The analysis of October-November 2008 throws up the question of how the march of the Spring-season seasonal cycle is controlled by different processes.
- Specifically, I (TT) have analysed the southern-spring teleconnections into the SEP related with
 - The seasonal movement of the southern storm-track.
 - The shift of convection in the ITCZ
 - Intra-seasonal variability, foremost the MJO.
- As a result of the interplay of these processes, how predictable is the progression of the seasonal cycle, and of its anomalies?
- Will present at the EGU in Vienna

Reanalysis-based climatology for the sub-seasonal variability in the SEP

ERA-Interim 1989-2008

Conclusions

- 1. The Sc in the subtropical anticyclone of the south-east Pacific strongly respond to dynamical forcing on synoptic time-scales and longer
- 2. Such forcing is mainly provided from the mid-latitude storm track via its interaction with the Andean orography
- Sc mean and variability are affected by large-scale teleconnections which can arise from remote areas of tropical convection. Their occurrence depends on the position of the sub-tropical jet stream and form part of the regular progression of southern-hemisphere Spring season.

Average circulation

Meridional transects

(btw, not all of the agreement stems from assimilation)

