

Gravity waves as a modulator of clouds in the South East Pacific

<u>G. Allen¹</u>, G. Vaughan¹, H. Coe¹, T.Toniazzo², P. Minnis³, J. K. Ayers³

¹(Centre for Atmospheric Science, University of Manchester, UK)

²U. Reading, UK

³NASA Langley, USA

The University

Motivation

- Another source of cloud variability
- Observational case study
 - Satellite analysis
 - Why were they there?
 - Relationship to POCs
- Further work Other times and places

Pockets of Open Cells (POCs)

- Always observed well away from the coastline
- •Enhanced drizzle rates in surrounding wall cloud (Wood et al., 2009; 2010)

Observations of POCs in the SEP

- POCs are not rare
- Mechanisms leading to their formation remain theoretical, yet LES representation looking good
- Drizzle common to all hypotheses but...
 - drizzle may be initiated by a number of different processes e.g. reduced CCN, thermodynamics
- Between 7th Oct 10th Oct 2008, GOES-10 images show propagation of gravity waves (GWs) across the SEP
 - seen as modulated cloud brightness temperature.
- POCs formed in their wake and advected away with the mean flow.
- Focus here on an observation-led process study

Gravity wave observation

Gravity waves = bright and dark wave fronts in cloud field

Retrieved CTH from GOES-10

GW Time-line

- Waves take 22
 hours to reach the
 coast, travelling
 ~800 km
- Phase speed ~ 40 km/h
- Wavelength ~ 60 km

The University

Satellite retrievals of cloud bulk properties

Right: GOES-10 retrieved LWP

Modulations in cloud Tau, LWP and Re are seen.

Waves moving into preexisting enhanced LWP areas form POCs

POCs in wake of gravity waves

LEM modelling of POCs

- Gravity wave simulated using an isentropic perturbation in the vertical wind field of the Met Office Large Eddy Model.
- Vertical velocity field modelled as a vertically symmetric triangular function peaking at cloud top and decaying to zero at the surface.
- Amplitude chosen to match the observed peak-to-trough in satellite-retrieved cloud top height (300 metres)
- Modulated in time by a sine wave with a period of 55 minutes in line with observations
- Fixed locations (and corresponding ECMWF T799 91 sigma level) used to initiate the model at 1200 UTC, concurrent with observations of POC forming zones

LEM results

Above: Cloud cover percent (red) and cloud liquid water path (blue) with time during the passage of a GW, with (left) and without (right) rain formation. Dashed line = control (no GW) case.

LEM – model liquid water path

Without gravity wave

Just after wave

2 hrs after gravity wave

Summary

- Gravity waves are excited in the SEP throughout October 2008 in a STJ disturbance
- These waves propagate across the SEP; and are evident as northeastward propagating coherent wave-trains in cloud brightness temperature and retrieved cloud bulk properties
- The waves propagate perpendicular to the mean north easterly flow
- On occasion, POCs form in the troughs of these waves, which subsequently advect with the mean flow.
- LEM modelling suggests POCs may be formed by simulated waves through a forced and subsequently self-sustained change in vertical mixing and cloud top entrainment, coupled with a reduction in total water content in the cloud layer due to drizzle formation.
- This mechanism suggest a new additional mechanism which ultimately leads to POC formation in the SEP, playing a significant role in the tropical energy budget.
- POCs and their manifold potential initiative processes remain unresolved in GCMs.