Numerical simulation of heavily drizzling cloud regimes in VOCALS

David B. Mechem Atmospheric Science Program Department of Geography University of Kansas

21 March 2011

Sandra E. Yuter

Department of Marine, Earth, and Atmospheric Sciences North Carolina State University

Simon P. de Szlege of Oceanic and Atmospheric Sciences Oregon State University

Max 27 dBZ

Typical open cells with intermediate drizzle

23 Oct 2008, 12 UTC

Ship-based CCN concentration, stratified by drizzle category

Analysis of R/V RHB soundings

Mean moisture over the 10-200 m layer (q_v) versus inversion height (z_i) for different drizzle conditions

• Boundary layers were both moist and deep (1.4 to 2 km in height) for stronger drizzle events

• Typical, weaker drizzle events that tended to be either drier or shallower.

Near-LES approach

System for Atmospheric Modeling (SAMEX) — Explicit Microphysics; Khairoutdinov and Randall (2003); microphysics based on Kogan (1991)

- 26 Oct 2008
- LW radiation only 105 W m⁻² jump at cloud top
- Interactive surface fluxes (H \approx 5 W m⁻²; LE \approx 55 W m⁻²)
- Size-resolved ("bin" or "explicit") microphysics
- 34 droplet bins; 19 CCN bins
- Initial CCN ~135/cc, shape based on RICO distribution
- Reflectivity calculated directly from DSD

Domain: 57.6 x 57.6 km²

- *dx=dy*=150 m
- *dz* stretched: 25 m at *z* = 0; 40 m at *z* = 800 m; 25 m at *z* = 1800 m
- Grid: 384x384x96, run for 12 h

Factor separation technique

Near-LES results (1)

Average quantities from 8–12 h

Simulation	<i>R</i> [mm d ⁻¹]	w _e [cm s⁻¹]
Deep (control simulation)	0.98	0.76
Shallow	0.44	0.58
Doubled CCN	0.57	0.85
Shallow + Doubled CCN	0.28	0.72

Near–LES results (2)

Average quantities from 8–12 h

Near-LES results (3)

CFADs of simulation reflectivity

Near-LES results (4)

Primary (i.e., over a short enough timescale that feedbacks are minimal) responses to BL depth and CCN concentration:

- •The two deep simulations have similar precipitation rates.
- •The two shallow simulations have similar precipitation rates.
- The effect of increased CCN is to delay the onset of precipitation.

Divergence and vertical velocity CFADs in cells

2

0.4

0.2

0

-2

-1

0 RDIV (m s^{-1} km⁻¹)

Context with other MBL regimes

Conclusions

- Larger drizzle rates are generally associated with deep, moist boundary layers and both low and high CCN concentrations.
- •Simulated precipitation is more sensitive to changes in boundary layer depth than to commensurate changes in CCN concentration.
- •These are the first-order, primary feedbacks of boundary layer depth and CCN on precipitation. The longer integrations are more difficult to interpret (complicated dynamical feedbacks; coalescence processing; "buffering").