

A overview of published VOCALS studies on gas composition and aerosol along 20S

Hugh Coe Centre for Atmospheric Sciences University of Manchester

MANCHESTER 1824

20-South Rationale

- •Statistically representative cloud, thermodynamic and composition dataset in support of modelling.
- •UK BAe-146, US DoE-G1, US NSF-C130 and Ron Brown used.
- •35 flights = 230 hours sampling time.
- •70 90 W, from 0-7 km, over 24 days.
- •Composition statistics as a function of longitude interpreted for airmass history.
- •Allen et al, 2010, ACPD, in press
- •Links to Bretherton et al., 2010, ACP

b420 flight track overlaid on ops.goes-10.200811131258.ch1_vis_big.jpg -79 -78 -77 -76 -75 -74 -73 -72 -7 BAe-146 B408 B410 ŝ B411 B412 Altitude B414 B419 -84 -82 -80 -78 -76 -74 -72 -70 B420 NSF-C130 RF01 RF02 RF03 RF04 Altitude FOS -84 -82 -80 -78 -76 -74 -72 -70 DoE-G1 ŝ Altitude -84 -82 -80 -78 -76 -74 -72 -70 Longitude / °E

Back Trajectory Analysis

10-day Back Trajectories, 20081024, 00UTC

MANCHESTER

•BL trajectories show lack of variability and more south-north direction than FT

•FT has a gradient in source origin Continental PBL sources near the coast

•Descended long-range remote sources west of 75 W.

• Uplift to UT may have frozen in some pollution signatures and removed others

Back trajectories - FT

MANCHESTER 1824

Coastal Gradients – MBL (Allen et al 2011)

•CO decreases with distance offshore – reduced reach of combustion-affected airmasses

•SO2 shows episodic enhancement nearshore. Note long tail.

•Ozone essentially flat, note bimodal in remote zone

Coastal gradients - FT

CO / ppbv

•Weak gradient in CO

•Strong gradient in SO2 with episodic nature

 Increasing gradient in ozone – note bimodal distribution in CO and O3.

MBL Aerosol composition and clouds

FT Aerosol and clouds

Aerosol acidity

Variability and mixing

- •MBL well mixed
- •Often enhancements in the FT discrete layers.
- •Evidence of entrainment and mixing in the cloud layer

Aerosol size distributions

Size distributions from coastal sites

Source attribution at the coast

Aerosol chemical characterisation offshore

Hawkins et al., JGR, 2009

Aerosol chemical characterisation offshore

Hawkins et al., JGR, 2009

Summary of VOCALS Chemical characterisation findings published to date

• Significant zonal gradients in mean MBL sub-micron aerosol particle size and composition, CO, O3 and SO2 – associated with similar gradients in CDN

• FT is often more polluted than the MBL in the mean but highly variable – complex interleaving of air masses from diverse source

• Points to entrainment being an important process – Tony Clarke

• Coastal measurements indicate that whilst urban/biofiel sources dominate the contribution to aerosol mass, biomass burning are an important contribution to CCN

• Shipborne measurements indicate the majority of the organic matter in aerosol are anthropogenic in nature, with some primary marine contribution