DMS as an Integrator of Dynamic, Chemical, and Biological **Processes during** VOCALS **Barry Huebert** University of Hawaii Also: Mhyangrt, @hawabilondyduist1, S. G. Howell¹, L. M. Shank¹, C. S. McNaughton¹, A. D. Clarke¹, L. N. Hawkins², L. M. Russell², D. S. Covert³, D. J. Coffman⁴, T. S. Bates⁴, P. K. Quinn⁴, N. Zagorac⁵, A. R. Bandy⁵, S. P. deSzoeke⁶, P. D. Zuidema⁷, S. C. Tucker⁸, W. A. Brewer⁹, K. B. Benedict¹⁰, J. L. Collett¹⁰, C. Fairall

Charlson et al., Nature, 326, 655-661, 1987.

Can We Integrate Up The CLAW Hypothesis? Not Even Close!!

> So why even try to quantify fluxes and conversion rates?

It is of great value to know the <u>direction</u> and <u>magnitude</u> of process changes in a different climate

surface.ocean solas 20g2 lower.atmosphere.study 1. Atmospheric Chemistry: Reaction Rates, Branching Ratios

Average Effective [OH] was Derived from DMS Fluxes during VOCALS

 $\frac{\partial \overline{S}}{\partial t} + \frac{\partial \overline{S}}{\partial x} + \frac{\partial \overline{S'w'}}{\partial z} = P - L$

Continuity Equation

$$F_0(DMS) - F_{zi}(DMS) = L(DMS) = k_{DMS}[OH]$$

Yang, Blomquist, Huebert (2009), Atmos. Chem. Phys., 9, 9225-9236.

2. Natural vs LRT Sulfur Fluxes to Remote Regions – Sulfur Budget From PASE – Pollution vs Natural Sulfur?

2. Natural vs LRT Sulfur Fluxes to Remote Regions What was the Main Sulfur Source for nss-Aerosols during VOCALS?

Yang, MX, PhD Dissertation, Dept Oceanography, UHawaii, 2010.

3. Atmospheric Dynamics / Entrainment Velocities DMS showed a Clear Diurnal Cycle - allowing us to estimate entrainment velocity (ω_e)

Caldwell et al. 2005)

Yang, Blomquist, Huebert (2009), Atmos. Chem. Phys., 9, 9225-9236.

Atmospheric Chemistry helps Constrain Dynamics

SO₂: Model and Obs fit pretty well.

Implied SO₂ diel cycle, with oxidation from DMS being the principal source and in-cloud oxidation as the main sink. The implied cycle agrees well with observations until 1500 UTC, with measurements in the subsequent hours likely subject to greater spatial bias.

Atmospheric Chemistry helps Constrain Dynamics

Sulfate: Not so good Implied SO_4^{2-} cycle assuming a well-mixed MBL. The observed diel cycle in SO_4^{2-} is not captured by this calculation. There is virtually no vertical gradient of SO_2 , so entrainment won't change its concentration.

SO₄⁼, however, is being produced in cloud. It does not show up as aerosol in this profile because nearly all the BuL sulfate is tied up in cloud droplets.

Does that BuL/cloud sulfate mix downward continuously?

Atmospheric Chemistry helps Constrain Dynamics

Sulfate with Post-sunset Re-coupling: Not bad

Implied SO₄²⁻ cycle assuming a well-mixed MBL at night and decoupled MBL during the day. SO₄²⁻ produced in-cloud is summed over the entire day and only added to the MBL budget over the first four hours after sunset as the MBL re-couples. The implied cycle qualitatively agrees with shipboard.

4. Physics of Air-Sea Gas Exchange – DMS Observations

Our five k_{DMS} data sets (VOCALS is Green) lie very close to the NOAA-COARE Model Line

 k_{660} tends to increase with SST as noted by Marandino et al. (2008)

Corrected for: Atmos Stability, Solubility(T), DMS_w variation

Sc(T), Relative wind dir,

Yang, et al. (2010), Air-sea Exchange of Dimethylsulfide (DMS) in the Southern Ocean – Measurements from SO GasEx Compared to Temperate and Tropical Regions, SO GasEx Issue, *J. Geophys Res., in revision.*

5. Marine Biogeochemistry & the Natural Sulfur Source

Yang, MX, PhD Dissertation, Dept Oceanography, UHawaii, 2010.

Entrainment of FT Tracers into the MBL

Assume a box of MBL air: 1 km deep and 1 km sides

Assume an entrainment velocity of 4 mm/s

In one day, a 350 m deep layer of FT air will descend into the MBL

Entrainment of FT Air into the MBL

In one day, a 350 m deep layer of FT air will descend into the MBL

That layer of FT air will bring with it all the tracer molecules it contains. This is a downward flux, independent of the MBL concentration of the tracer.

Entrainment of FT Air and Tracers into the MBL

Trace materials move with the air.

The entrainment tracer flux equals the volume of air times its FT concentration:

 $F = V_{Entr}$ [tracer/volume]

The MBL tracer concentration does NOT affect this flux

Summary – EC-Measured Fluxes Clarify:

Atmos Chem Budgets and Ambient Reaction Rates Natural Sources vs LRT/Pollution Sources Atmospheric Dynamics & Entrainment Velocities The Physics of Air-Sea Gas Exchange Biogeochemical Processes

And

Knowing the functional form (physics) of each process gives us a basis for computing *sensitivities* to each controlling environmental variable.

Thanks to NSF Atmospheric Chemistry for supporting the shipboard flux measurements.