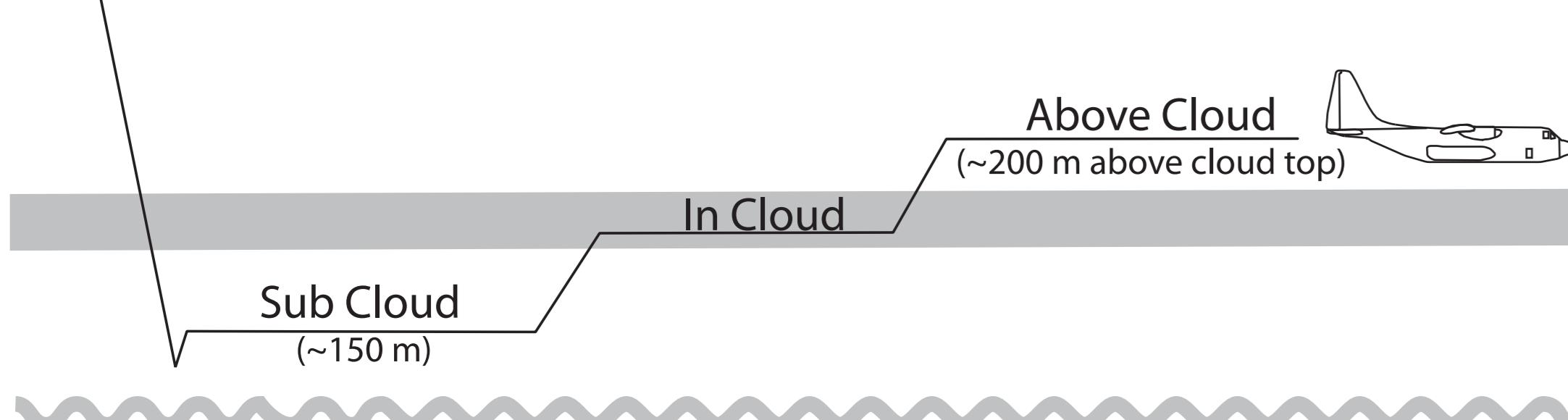


The WCR, WCL, GVR Integrated Dataset for VOCALS-REx

David Leon¹, Paquita Zuidema², Andy Pazmany³, Jefferson Snider¹, Zhien Wang¹, and a cast of thousands

¹Atmospheric Science Department, University of Wyoming, Laramie WY

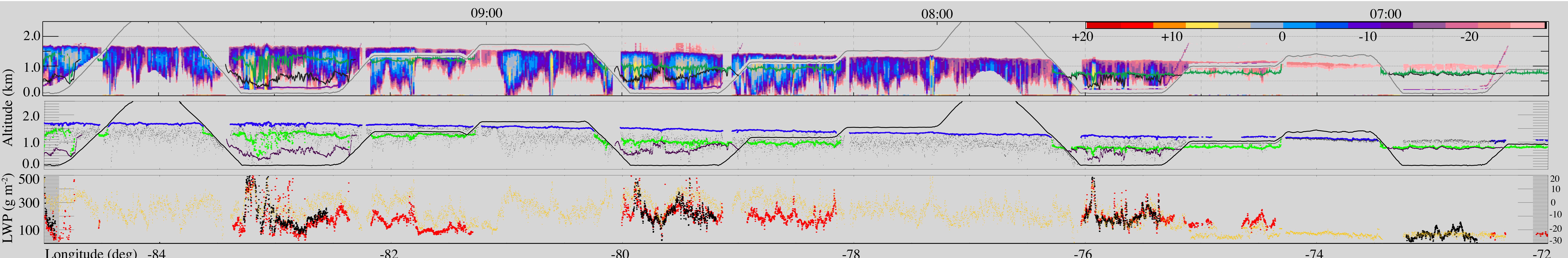
²Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami FL ³ProSensing Inc., Amherst MA


Introduction

The WCR-WCL-GVR Integrated Dataset

A suite of three remote sensing instruments was deployed on the NSF/NCAR C130 for the VOCALS-REx field campaign in October - November 2008. This suite consisted of: The Wyoming Cloud Radar (WCR), Wyoming Cloud Lidar (WCL), and a G-Band Vapor Radiometer (GVR). Combining measurements from these sensors with each other and with in situ measurements made onboard the C130 allows key quantities, such as adiabatic liquid water path, that could not be determined from a single instrument. The motivation for creating the WCR-WCL-GVR Integrated Dataset (referred to as ID or IDs) is to free users, who are often interested in a single derived product or small set of products, from having to obtain data for the individual instruments, ingest these data, and implement the desired calculations, all while avoiding a variety of pitfalls that may be well known to experienced users, but which are often not obvious to inexperienced users (prior to experiencing them firsthand).

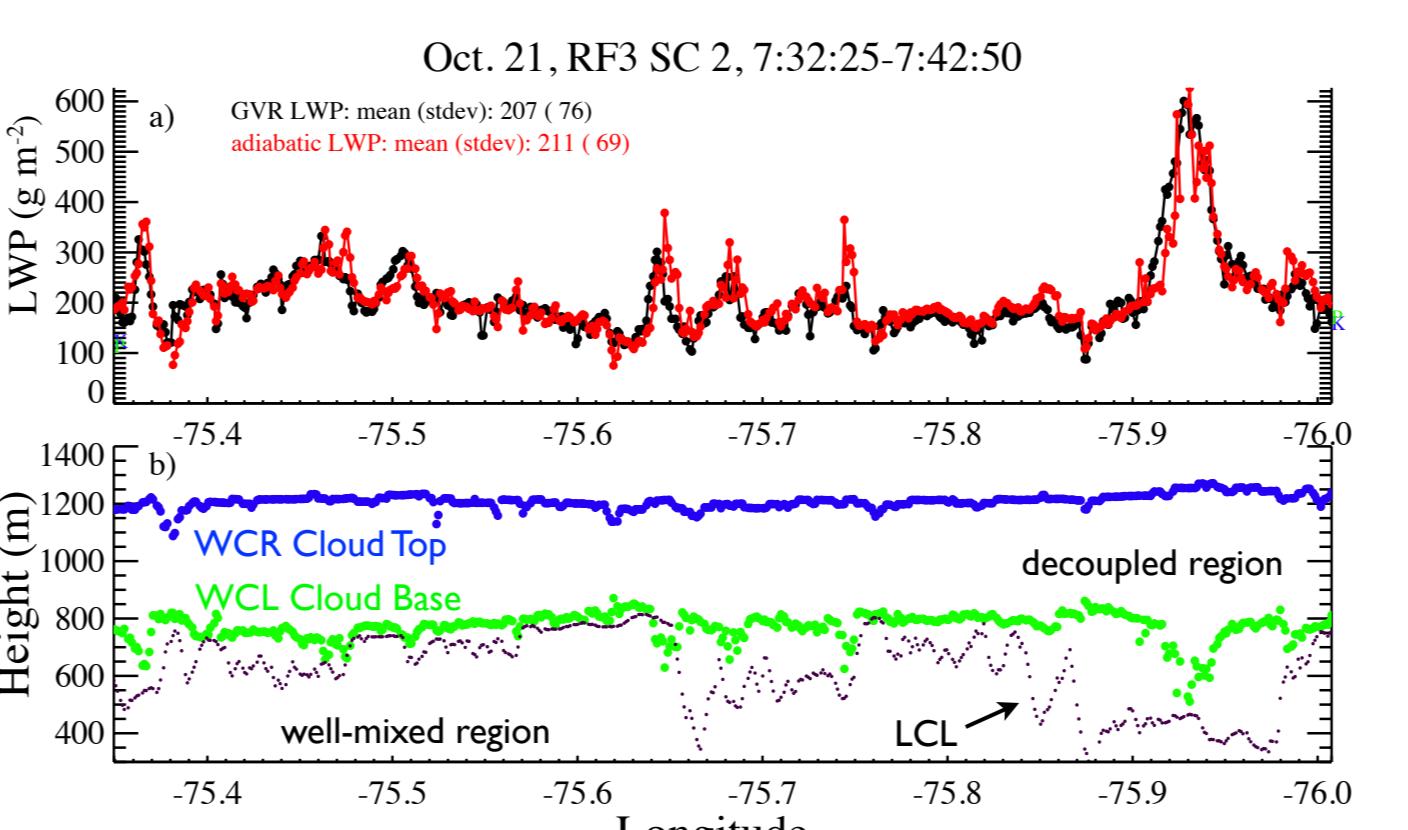
Instrument	Acronym	Description	Configuration	Basic Products
Wyoming Cloud Radar	WCR	95 GHz dual-channel Doppler radar	3-beams: Upward, Downward, and down+up	Radar Reflectivity, Doppler Velocity
Wyoming Cloud Lidar	WCL	355 nm elastic-backscatter lidar	Upward-looking, parallel and perpendicular	Attenuated backscatter
G-Band Vapor Radiometer	GVR	G-band water vapor radiometer	Upward-looking	Tb @ 183±1.5, 37-144 GHz


For most of the VOCALS-REx flights the C130 alternated between sub-cloud, in-cloud, and above-cloud flight legs. For most C130 flights during VOCALS-REx legs at each level were 10 min each, while for the POC flights longer legs ~40 min were used and additional levels added. Products that can be derived depend on the leg level, e.g. cloud-base from the WCL is only available for sub-cloud flight legs, while cloud-top height and *zmax* (from the WCR) are available for all flight levels. Key products and the levels they are computed for are listed in the table at the top of the next column.

With the WCR & WCL being deployed for many, if not most, C130 field campaigns we believe that production of similar integrated datasets should be produced for future field campaigns (such as ICE-T in July 2011) with the specific products included varying from deployment to deployment based on the deployed instrument suite and the scientific objectives of the project. Further, selection of products for inclusion in these datasets should be considered alongside flight plans and logistical issues as a routine part of the pre-deployment planning process.

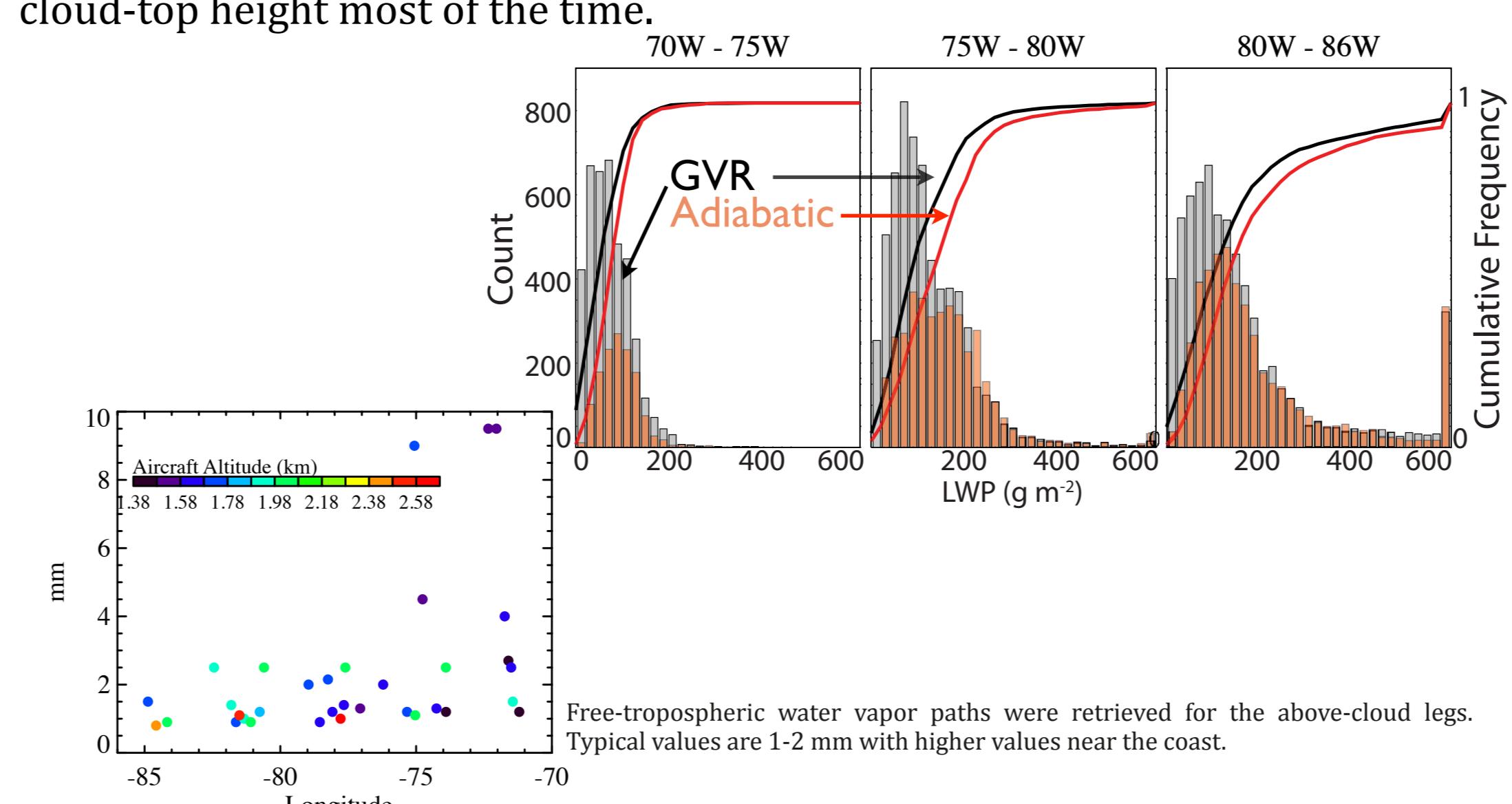
While a significant number of VOCALS participants are already using the WCR-WCL-GVR IDs in their research, others may not be simply because they are unaware of this dataset. Thus, the objective of this presentation is to raise the awareness of the integrated dataset and how investigators may be able to incorporate this dataset into their analysis.

The WCR-WCL-GVR IDs are currently available through anonymous ftp at:
ftp://ftp.ciwyo.edu/pub/leon/VOCALS/WCR-WCL_IDS
 In the next few weeks, the WCR-WCL-GVR ID files and accompanying documentation will be uploaded to EOL. Investigators wishing to use this dataset are encouraged to contact the authors at: leon@uwyyo.edu and pzuidema@rsmas.miami.edu



Radiometer Liquid Water Paths

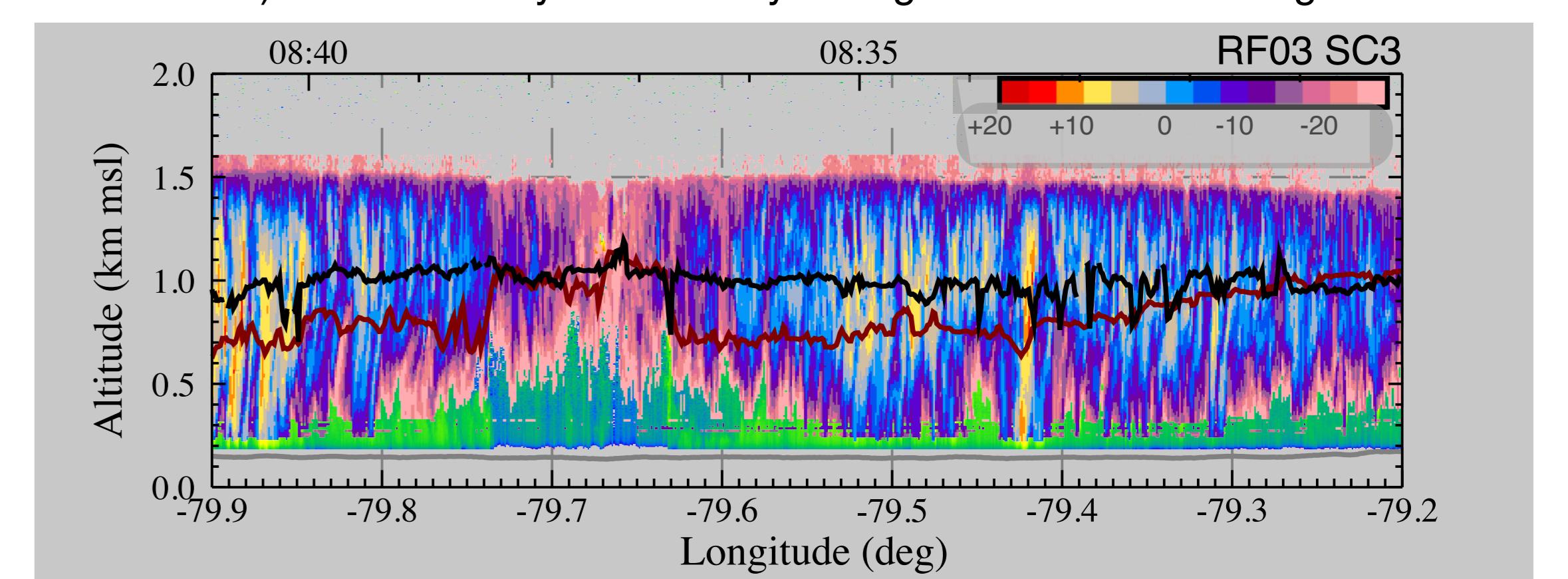
GVR LWP Retrieval


The G-band (183 GHz) Vapor Radiometer is a small, relatively inexpensive, zenith-pointing radiometer that can be mounted in a standard PMS canister. This instrument was originally designed for use in arctic conditions with very low water vapor paths. Its small size, fast response time, and accuracy that can be achieved (for low vapor paths), along with the lack of options for radiometric measurement of LWP made the GVR an appealing choice for deployment on the C130 in VOCALS-REx, despite vapor paths likely to saturate the 183 ± 1, ± 3 GHz channels.

The LWP retrieval relies on an independent estimate of the boundary-layer water vapor path which is estimated from a combination of the in situ water vapor mixing ratio, the WCL cloud-base and WCR cloud-top heights. A correction of +0.8 K, added to the reported dewpoint temperature to bring the LCL into agreement with the WCL derived cloud base for coupled subcloud legs (Bretherton et al., 2010.) secured good agreement with adiabatically-derived LWPs in best-case conditions (see example below).

RF3 SC2 was selected to illustrate the comparison between the GVR-retrieved and adiabatic LWPs because it sampled a thick, yet mostly non-precipitating cloud, for which the cloud base and LCL were often closely aligned. The agreement between the two independent measures of LWP, shown in the top panel, is remarkable, especially considering the variability in LWP. (Note: missing LWPs between the WCL and GVR, which were not identified until after the VOCALS-REx deployment required ad hoc re-alignment of the series.)

Summary statistics from the four nighttime C-130 flights along 20S out to 85W (Oct. 21, 23, 25 and Nov. 6), subdivided by longitude, are shown below. Clouds with LWPs between 100 to 400 g m⁻² appear to be consistently adiabatic, suggesting a higher sub-adiabatic fraction may be appropriate for SEP stratocumulus than has been reported for the N. Atlantic. For thinner clouds the WCR is often unable to determine cloud-top height (see banner figures at bottom of page), therefore adiabatic LWPs are not available. Further offshore, where LWPs are higher (consistent with precipitation) the WCR is able to determine cloud-top height most of the time.



The GVR LWP retrieval is described in detail in Zuidema et al. 2011 (Manuscript in preparation -- to appear in ACP/D).

Adiabatic Liquid Water Paths in Drizzling Clouds

The remarkable agreement between the GVR-derived LWP and the adiabatic LWP for clouds that are clearly drizzling (in many cases strongly) at first seems paradoxical: removal of cloud water must inevitably lead to sub-adiabatic LWPs. Wood (2005) addressed this issue by comparing the timescales for removal of cloud water due to precipitation to the replenishment through turbulent transport of water vapor through cloud base. In this treatment, cloud base remains fixed and cloud water is reduced -- That is, cloud base remains consistent with the thermodynamics of the subcloud layer, but inconsistent with the properties of the overlying cloud (parcels descending from above would reach a higher cloud base).

It should be noted that, in comparing the GVR and adiabatic LWPs, we have stealthily changed the definition of *adiabatic*. While in the conventional (strict) sense, the concept of adiabaticity applies to a parcel, here we are comparing retrieved LWP with an adiabatic value obtained from cloud base and cloud-top for the same vertical column. The timescale argument of Wood (2005) can therefore be recast such that the loss of cloud water (due either to drizzle or entrainment) is immediately reflected by changes in cloud base height.

References

- Bretherton, C., R. Wood, R. George, D. Leon, G. Allen and X. Zheng, 2010: Southeast Pacific stratocumulus clouds, precipitation, and boundary layer structure sampled along 20S during VOCALS-REx. *Atmos. Chem. Phys.*, 10, 1541-10,559.
- Pazmany, A. 2006: A compact 183 GHz radiometer for airborne and ground-based water vapor and liquid water sensing. *IEEE Trans. Geosci. Rem. Sens.*, 46, 3601-3617.
- Wang, Z., P. Wechsler, W. Kuester, J. French, A. Rodi, B. Glover, M. Burkhardt and D. Lukens, 2009: Wyoming Cloud Lidar: Instrument Description and Applications. *Opt. Ex.*, 17, No. 16.
- Wood, R. (2005). Drizzle in stratiform boundary layer clouds. Part 1: Vertical and horizontal structure. *Journal Of The Atmospheric Sciences*, 62, 3011-3033.
- Zuidema, P., D. Leon and A. Pazmany and M. Cadeddu, 2011: Aircraft millimeter-wavelength retrievals of cloud liquid water path during VOCALS. *ACPD*, manuscript under preparation.

Acknowledgments

We are deeply indebted to a large number of people and institutions for supporting the VOCALS program, the deployment of the NSF/NCAR C130 and associated instruments during VOCALS-REx. The staff of the RAF flight facility for supporting the C130 deployment (with specific thanks to RAF project manager Allen Schanot). The University of Wyoming King Air National Facility supported the deployment of the WCR. Samuel Haimov for his efforts on calibration, data processing, and data quality control for the WCR.

We are also grateful to the overall VOCALS PIs: Rob Wood and Chris Bretherton at the University of Washington, and Roberto Menchaca at UCLA. Chris Bretherton, Robert Wood, and their students at the University of Washington worked with early versions of the IDs, spotting numerous errors in the process. The development of the Integrated Dataset was supported by two grants from NSF: ATM-0715077 (Leon) and Large-Scale Dynamics Division Award 0745470 (Zuidema).

This list is inevitably incomplete, while there are many individuals and institutions whose names have not been mentioned, however their contributions have not been overlooked.