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Introduét'!i'on

The WCR-WCL-GVR Integrated Dataset

A suite of three remote sensing instruments was deployed on the NSF/NCAR
C130 for the VOCALS-REx field campaign in October - November 2008. This
suite consisted of: The Wyoming Cloud Radar (WCR), Wyoming Cloud Lidar
(WCL), and a G-Band Vapor Radiometer (GVR). Combining measurements from
these sensors with each other and with in situ measurements made onboard
the C130 allows key quantities, such as adiabatic liquid water path, that could
not be determined from a single instrument. The motivation for creating the
WCR-WCL-GVR Integrated Dataset (referred to as ID or IDs) is to free users,
who are often interested in a single derived product or small set of products,
from having to obtain data for the individual instruments, ingest these data,
and implement the desired calculations, all while avoiding a variety of pitfalls
that may be well known to experienced users, but which are often not obvious
to inexperienced users (prior to experiencing them firsthand).

Instrument Acronym Description Configuration Basic Products
: 95 GHz dual-channel 3-Beams: Upward, Radar Reflectivi
Wyoming Cloud Radar WER Doppler radar Downward, and Doppler Velocit;y
Dawmn-Slant
_ Upward-looking
Wyoming Cloud Lidar WCL t3)55knm tilaslt}g- Parallel and ﬁtteknuati:d
ackscatter lidar Perpendicular ackscatter
G-Band Vapor Radiometer GVR S;B?Onﬁe‘f::er vapor Upward-looking It7) gi?;;,ﬂ,

For most of the VOCALS-Rex flights the C130 alternated between sub-cloud, in-
cloud, and above-cloud flight legs. For most C130 flights during VOCALS-Rex
legs at each level were 10 min each, while for the POC flights longer legs ~40
min were used and additional levels added. Products that can be derived
depend on the leg level, e.g. cloud-base from the WCL is only available for sub-
cloud flight legs, while cloud-top height and Zmax (from the WCR) are
available for all flight levels. Key products and the levels they are computed for

are listed in the table at the top of the next column.
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With the WCR & WCL being deployed for many, if not most, C130 field
campaigns we believe that production of similar integrated datasets should be
produced for future field campaigns (such as ICE-T in July 2011) with the
specific products included varying from deployment to deployment based on
the deployed instrument suite and the scientific objectives of the project.
Further, selection of products for inclusion in these datasets should be
considered alongside flight plans and logistical issues as a routine part of the
pre-deployment planning process.

While a significant number of VOCALS participants are already using the WCR-
WCL-GVR IDs in their research, others may not be simply because they are
unaware of this dataset. Thus, the objective of this presentation is to raise the
awareness of the integrated dataset and how investigators may be able to
incorporate this dataset into their analysis.

The WCR-WCL-GVR IDs are currently available through anonymous ftp at:
ftp://ftp.rsmas.miami.edu/users/pzuidema/GVRWCRWCFL
ftp://cat.uwyo.edu/pub/permanent/leon/VOCALS/WCR-WCL IDS

In the next few weeks, the WCR-WCL-GVR ID files and accompanying documentation will be uploaded to EOL.
Investigators wishing to use this dataset are encouraged to contact the authors at: leon@uwyo.edu and
pzuidema@rsmas.miami.edu .

Variable Definition Source Levels Units
sub in above
cloud | cloud | cloud
Tmax Max reflectivity in vertical WCR v v v dB7
column
drizzle drizzle indicator WCR v v v
cloudtop cloud-top height WCR v v v m
WCLcloud WCL cloud indicator WCL v
cloudbase WCL v (4 m
LCL In Situ |/ m
cloudthick cloud thickness WCR + WCL v v’ m
LWPadiabatic adiabatic LWC WCR+WCL+In Situ v v’ gm2
Effective radius adjusted to .
REFFct cloud top WCR+In Situ v v
v’ For in cloud legs, cloudbase, cloudthick, and LWPadiabatic are calculated from in situ LWC assuming an adiabatic liquid water
content lapse rate based on the measured temperature and pressure.

Looking for Love

in all the wrong places

Cloud Base - LCL Comparisons

The airborne atmospheric research community has long recognized the need
for improved measurements of water vapor mixing ratio. Chilled mirror
hygrometers have long been the standard for measuring dewpoint. While fairly
accurate (dewpoints are typically assumed to be accurate to within ~+0.5 °C),
chilled mirrors have slow (< 1Hz) response rates and difficulty responding to
abrupt jumps in humidity. Other sensors, such as UV hygrometers, offer much
better response times, but are prone to drifting and typically must be forced
back to a reference measurement (typically from a chilled mirror device) over
periods longer than a few minutes or tens of minutes.

Comparing the Lifting Condensation Level (LCL) computed from the in situ
dewpoint, temperature, and pressure measurements using an iterative
procedure with cloud base heights measured by the WCL can provide an
iIndependent check on dewpoint?, provided the boundary layer is well mixed. To
our surprise, an offset of 75 - 100 m was found with the LCL above the
observed cloud base (this offset appeared to vary somewhat from flight-to-flight
and leg-to-leg). While offsets in the opposite direction are fairly easily
explainable through physical processes, offsets suggesting higher mixing ratios
at cloud base than ~150 m above the ocean surface presumably result from
instrumental issues. Based on a survey of the LCL-cloud base comparison for
all subcloud legs where the boundary layer was apparently well-mixed, an
offset of +0.8 °C has been added to the reported dewpoint prior to computing
the LCL and other dewpoint-dependent values included in the IDs.
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Radiometer—Liquid Watér Paths

GVR LWP Retrieval

The G-band (183 GHz) Vapor Radiometer is a small, relatively inexpensive, zenith-
pointing radiometer that can be mounted in a standard PMS canister. This
instrument was originally designed for use in arctic conditions with very low
water vapor paths. Its small size, fast response time, and accuracy that can be
achieved (for low vapor paths), along with the lack of options for radiometric
measurement of LWP made the GVR an appealing choice for deployment on the
C130 in VOCALS-REX, despite vapor paths likely to saturate the 183 +1, +3 GHz
channels.

The LWP retrieval relies on an independent estimate of the boundary-layer water
vapor path which is estimated from a combination of the in situ water vapor
mixing ratio, the WCL cloud-base and WCR cloud-top heights. A correction of +0.8
K, added to the reported dewpoint temperature to bring the LCL into agreement
with the WCL derived cloud base for coupled subcloud legs (Bretherton et al,
2010,) secured good agreement with adiabatically-derived LWPs in best-case
conditions (see example below).
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Summary statistics from the four nighttime C-130 flights along 20S out to 85W
(Oct. 21, 23, 25 and Nowv. 6), subdivided by longitude, are shown below. Clouds

with LWPs between 100 to 400 gm™ appear to be consistently adiabatic,
suggesting a higher sub-adiabatic fraction may be appropriate for SEP
stratocumulus than has been reported for the N. Atlantic. For thinner clouds the
WCR is often unable to determine cloud-top height (see banner figures at bottom
of page), therefore adiabatic LWPs are not available. Further offshore, where
LWPs are higher (consistent with precipitation) the WCR is able to determine
cloud-top height most of the time.

70W - 75W 75W - 80W 80W - 86W
800 'g
v
>
ol GVR =
+— y —
:C; L
o v
S 400 / Z
©
S
200 =
>
or-. - - - -~ v~ 1 T
0: o ® 10 HHHD HHHHHI‘IH nnnnn ol Hﬂﬂ”ﬂﬂﬂnnﬁﬂﬂﬂﬁﬁﬂﬂﬂﬁ 0 ~
o [ Alrcraft Altitude (km) e 10 200 400 600 200 400 600 200 400 600
138 1.58 1.78 1.98 2.18 238 2.58 LWP (g m™)
6 F ]
= [
S I °
41 o -
[ :
2 °o® ° -
- &° %’ %% ® ] Free-tropospheric water vapor paths were retrieved for the above-cloud legs.
oL . v v v v ] Typical values are 1-2 mm with higher values near the coast.
-85 -80 =75 -70
Longitude

The GVR LWP retrieval is described in detail in Zuidema et al. 2011
(Manuscript in preparation -- to appear in ACP/D).
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Adiabatic Liquid Water Paths in Drizzling Clouds

The remarkable agreement between the GVR-derived LWP and the adiabatic
LWP for clouds that are clearly drizzling (in many cases strongly) at first seems
paradoxical: removal of cloud water must inevitably lead to sub-adiabatic
LWPs. Wood (2005) addressed this issue by comparing the timescales for
removal of cloud water due to precipitation to the replenishment through
turbulent transport of water vapor through cloud base. In this treatment, cloud
base remains fixed and cloud water is reduced -- That is, cloud base remains
consistent with the thermodynamics of the subcloud layer, but inconsistent with
the properties of the overlying cloud (parcels descending from above would
reach a higher cloud base).

It should be noted that, in comparing the GVR and adiabatic LWPs, we have
stealthily changed the definition of adiabatic. While in the conventional (strict)
sense, the concept of adiabaticity applies to a parcel, here we are comparing
retrieved LWP with an adiabatic value obtained from cloud base and cloud-top
for the same vertical column. The timescale argument of Wood (2005) can
therefore be recast such that the loss of cloud water (due either to drizzle or
entrainment) is immediately reflected by changes in cloud base height.
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