

The Pre-VOCA Model Assessment: Results and Plans for the Next Phase

Matt Wyant

Rob Wood

Chris Bretherton

Roberto Mechoso

with help from
participating modeling groups

Overview

- PreVOCA experiment background
- Summary of earlier results – October averages
- The diurnal cycle at the stratus buoy
- Modelling synoptic changes
- The next phase of the modeling experiment

PreVOCA

Goal: Assess the forecast skill and biases of global/
regional model simulations of SE Pacific boundary-layer
clouds and aerosols on diurnal and longer timescales.

Method: Compare model hindcasts for October 2006 over
the SE Pacific. Operational/Global models run daily
forecasts. Regional models typically run a month-long
simulation continuously forced at domain boundaries.

Website:

www.atmos.washington.edu/~robwood/PreVOCA/index.html

Model	Levels	Resolution [km] (inner domain)
NRL COAMPS	42	81 (27)
COLA RSM	28	50
IPRC Reg_CM (IRAM)	28	~25
PNNL (WRF-Chem)	44	45 (15)
UCLA (WRF)	34	45 (15)
U. Chile (WRF)	43	45
ECMWF oper. 3-12h forecast	91	~25
ECMWF 5-day forecast	91	~40
ECMWF coupled fcst ensemble	62	~125
GMAO GEOS-5 DAS	72	~56
JMA 24-30h forecast	60	~60
NCEP oper. 12-36h forecast	64	~38
UKMO oper. 12-36h forecast	50	~40
LMDZ	38	50
NCAR CAM3.5/6	26/30	250
GFDL	24	250

Oct 2006 Low cloud fraction

3.6 UW

Summary of Comparison of October 2006 Means

- Model winds agree well with QuikSCAT and with each other.
- Model mean subsidence agrees fairly well.
- Much scatter in PBL/Sc properties such as boundary layer depth and cloud fraction, especially among the regional models.
- UKMO and ECMWF models perform best overall, correctly capturing most geographic variations in PBL depth/structure and cloud cover.

LWP Diurnal Cycle at 20S 85W

Low cloud diurnal cycle at 20S 85W

Ship-based
Visual
Observations

Evolution of clouds along 20 S

October 2006

BL Depth at 20S 85W

operational

regional

climate

Low Cloud at 20S 85W

operational

regional

MODIS

climate

Further Conclusions from PreVOCA

- Diurnal cycle of LWP has similar phase but weaker amplitude than observed at buoy.
- Diurnal cycle of cloud fraction is overestimated in some models.
- Diurnal upsidence wave similar to Garreaud and Munoz (2004) is present in most models.
- Mid-month BL deepening is captured qualitatively in most models, but cloud changes vary widely among models.
- Paper to be submitted to JGR...

The next phase...

- VOCA: Similar protocol to preVOCA using REx observations from 15 Oct -15 Nov 2008
- Specify or parameterize emissions of various aerosol and gas species in a standard protocol.
- Compare aerosol and gas concentrations to in-situ measurements, testing modelling of transport, diffusion and deposition.
- Compare cloud-top effective radius with satellite.
- Assess modeling of aerosol processing by clouds.
- To be discussed on Tuesday afternoon...

Extra Slides

Model Upsidence Wave

Diurnal $\omega_{850\text{hPa}}$ [Pa s⁻¹] at 20S

Oct 2006 10m Winds [m s^{-1}]

Regional Models

20S 85W

Climate Models

20S 85W

Operational Models

20S 85W

Mean Boundary Layer Depth Along 20S

w at 800hPa

Modeled 'Upsidence' Wave
November 14-28 2001
Garreaud and Munoz (2004) *J. Climate*

