# Coupled Ocean-Atmosphere Interactions in the Southeast Pacific

Dian Putrasahan, Art Miller, Hyodae Seo, Vincent Combes, Emanuel Di Lorenzo



VOCALS 2<sup>nd</sup> Meeting July 13<sup>th</sup>, 2009





#### **Model Domain**



- 88W to 68W, 8S to 38S
- □ Grid resolution:

horizontal = 20km atmosphere = 28 layers ocean = 30 layers

- □ Ocean spin up with NCEP forcing for 10 years
- Time periods: 1999-2007 10/1/08-12/14/08
- Atm. boundary downscaled from NCEP RA2
- □ Ocean boundary taken from monthly output of OFES and SODA clim.





### Sensitivity Tests

|   |                                 | 7-10                |                 |                       |
|---|---------------------------------|---------------------|-----------------|-----------------------|
|   | Expt. Run                       | Boundary conditions | Forcing<br>Wind | Forcing<br>SST        |
|   | SCOAR-soda                      | SODA                | RSM             | ROMS                  |
| 1 | SCOAR-ofes                      | OFES                | RSM             | ROMS                  |
|   | ROMS-NCEP-soda                  | SODA                | NCEP            |                       |
|   | ROMS-NCEP-ofes                  | OFES                | NCEP            |                       |
|   | ROMS-QSCAT-                     | SODA                | QSCAT           |                       |
|   | ROMS-QSCAT-ofes                 | OFES                | QSCAT           |                       |
|   | RSM-NCEP                        |                     |                 | NCEP                  |
|   | RSM-TMI_AMSRE                   |                     |                 | TMI_AMSRE             |
|   | RSM-SCOAR-soda<br>(multiple IC) |                     |                 | Monthly<br>SCOAR-soda |
|   | RSM-SCOAR-ofes (multiple IC)    |                     |                 | Monthly<br>SCOAR-ofes |

- Atmospheric model:
  separating out initial
  condition vs SST forcing
  impact on winds and
  atmospheric state
- Ocean model: choice of boundary conditions and its influence on ocean state
- Ocean model:
   momentum and heat
   fluxes contribution to
   SST distribution



#### SST-winds-upwelling



#### ??? Scientific Questions ???

- How strongly do the coastal winds induce upwelling that cools SST off the coast of Peru and Chile?
- How does latent heat loss from the ocean over the VOCALS region covary with mesoscale ocean-atmosphere variables and influence the overall SST distribution?
- How does mesoscale SST impact the overlying PBL structure and thereby influencing the overall cloudiness of the Southeast Pacific region?

口

#### Proposed Experiments

- Hindcast 1: Fully-coupled SCOAR run for 1999-2007.

   Hindcast 1: Fully-coupled SCOAR run for 1999-2007.
- ☐ Hindcast 2: Downscaled uncoupled RSM (atm.) runs for 1999-2007.
  - ☐ Downscaled RA2 using monthly mean SST specified from Hindcast 1
  - Downscaled RA2 using monthly mean SST prescribed from NCEP Analysis
  - Downscaled RA2 using monthly mean SST specified from TMI-AMSRE Optimum Interpolated SST
- Hindcast 3: Uncoupled ROMS (ocean) runs for 1999-2007.

   Hindcast 3: Uncoupled ROMS (ocean) runs for 1999-2007.
  - □ ROMS forced with monthly mean stresses and heat fluxes computed from Hindcast 1
  - ☐ ROMS forced with wind stresses and heat fluxes from the coarse resolution NCEP RA2
  - ROMS forced by satellite observations (QuikSCAT winds)

     | Part of the property of t





## Ocean Dynamics in the HCS



#### Focus On Four Air-Sea Coupling Issues

SST and wind stress coupling

□ Upwelling and mixed layer depth
 (MLD) variability

□ Latent heat flux over the ocean

SST and planetary boundary layer (PBL) structure