Aerosol-Cloud-Precipitation Interactions in a Self-Organizing System

Graham Feingold, Hailong Wang, Jan Kazil

NOAA Earth System Research Laboratory
Boulder, Colorado USA

VOCALS Workshop, July 2009
Miso Soup

Warm currents rise; Cold surface currents sink; Opposite movements cannot take place at the same time without self-organization;

Cellular structures emerge; Benard cells

Spontaneous creation of globally coherent patterns out of local interactions

Questions/Objectives

– Can we simulate the transition from closed to open cells?

– What role does the aerosol life cycle play in maintaining closed cells or closing open cells?

– Explore concept of self-organization

– Model-observational comparisons to further understanding of POC-related processes (Hailong Wang et al.)
Model

- The Weather Research and Forecasting (WRF) model
- Two-moment (bulk) cloud microphysics
- Monotonic advection
- Cyclic boundary conditions
- Aerosol Budget
- Nocturnal simulations: DYCOMS-II
- 60 km (180 km) x 60 km domain
 \((\Delta x = \Delta y = 300 \text{ m}; \Delta z = 30 \text{ m}; \Delta t = 3 \text{ s})\)
Aerosol Effects on Cloud Morphology via Drizzle

Albedo

Closed-cell
Albedo ~ 0.6
(non-precipitating)

Onset of
drizzle
results in
transition
to open-cell
convection

Open-cell
Albedo ~ 0.2
(precipitating)

WRF Model
+ 2-moment
μphysics;
60 km domain;
$\Delta x = \Delta y = 300$ m
$\Delta z = 30$ m

high aerosol

low aerosol

Garay et al. 2004, MISR Satellite images

Wang and Feingold, 2009a
Stable Equilibria: Attractors

- The process of transition starts with a positive feedback (precip)
- Once in equilibrium it enters a stable equilibrium
Vertical Velocity

Clean: 65 cm$^{-3}$
Moderate: 150 cm$^{-3}$
Polluted: 500 cm$^{-3}$

Near-surface vertical velocity

Red: Updrafts/surface convergence

Blue: Downdrafts/surface divergence

Black contours: Drizzle

Wang and Feingold 2009b
Global Order from Local Interactions

200-m vertical velocity from t = 6:15 to 9:15

Cells compete or cooperate while interacting with their shared physical environment

Behaviour can be reproduced numerically with following rules:
1) Keep a minimum distance from one another
2) Follow average direction of neighbour
Open/Closed Cell Boundary:
Conditional composite relative to clean/polluted boundary

Contours: x-wind perturbation (+ve = solid)
LWP

Wang & Feingold 2009b

Strongest rain closest to boundary between clean and polluted
Ship Tracks: Self organizing systems are resilient to change

(a) clean

(b) polluted

- a certain amount of random   
 than hinder, self-organization
- possible implications for geoengineering

Ship tracks filling open cells ??
Open cellular convection

Stevens and Feingold 2009
Conclusions

Closed/Open cellular structures exhibit the features of a self-organizing system; two stable states (Baker & Charlson)

Growth rate of open cells depends on strength of rain locally, and in surroundings - coherent patterns from local interactions

Aerosol gradients \rightarrow precipitation gradients \rightarrow mesoscale circulations that act to remove the gradient

Massive aerosol perturbations to an open cellular system increase the cloud cover/albedo but do not change the cellular structure to a closed state (robustness)
Ship Tracks

60 cm⁻³

(a) t=3 h
Cloud albedo

150 cm⁻³

(b) t=6 h

Wang and Feingold 2009b

Contours: rain
Shading: ship particles

- Mesoscale circulation transverse to track strengthens LWP in track
- Clearing on either side of track
Mesoscale circulation at the strong aerosol gradient
- Enhances LWP in the closed cell (polluted side)
- Generates clearing near the boundary
 (lack of counteracting outflow on the closed-cell side)

Wang and Feingold (2009b)
References:

- Immanuel Kant, *Kritik der Urteilskraft*, 1790
- Francis Heylighen, *The Science of Self-Organization and Adaptivity*
Clean: 65 cm^{-3}
Intermediate: 150 cm^{-3}
Polluted: 500 cm^{-3}
PDF of growth rates of a population of open cells

Cell sizes tend to achieve equilibrium

Median cell size

Initial rapid growth of large cells
Effect of resolution

Coarse resolution runs also exhibit poorer vertical mixing.