

Aerosol-Cloud-Precipitation Interactions in a Self-Organizing System

Graham Feingold, Hailong Wang, Jan Kazil

NOAA Earth System Research Laboratory
Boulder, Colorado USA

VOCALS Workshop, July 2009

Miso Soup

*Warm currents rise; Cold surface currents sink;
Opposite movements cannot take place at the
same time without self-organization;*

Cellular structures emerge; Benard cells

*Spontaneous creation of globally coherent patterns
out of local interactions*

Convectional and sedimentation dissipative patterns of Miso soup Tsuneo Okubo.
Colloid Polym Sci (2009) 287:167–178

Questions/Objectives

- Can we simulate the transition from closed to open cells?
- What role does the aerosol life cycle play in maintaining closed cells or closing open cells?
- Explore concept of self-organization
- Model-observational comparisons to further understanding of POC-related processes (Hailong Wang et al.)

Model

- The Weather Research and Forecasting (WRF) model
- Two-moment (bulk) cloud microphysics
- Monotonic advection
- Cyclic boundary conditions
- Aerosol Budget
- Nocturnal simulations: DYCOMS-II
- 60 km (180 km) x 60 km domain
($\Delta x = \Delta y = 300$ m; $\Delta z = 30$ m; $\Delta t = 3$ s)

Aerosol Effects on Cloud Morphology via Drizzle

Albedo

Closed-cell
Albedo ~ 0.6
(non-
precipitating)

*Onset of
drizzle
results in
transition
to open-cell
convection*

Open-cell
Albedo ~ 0.2
(precipitating)

high aerosol

WRF Model
+ 2-moment
 μ physics;
60 km domain;
 $\Delta x = \Delta y = 300$ m
 $\Delta z = 30$ m

low aerosol

Garay et al. 2004, MISR Satellite images

Wang and Feingold, 2009a

Albedo

Stable Equilibria: Attractors

- The process of transition starts with a positive feedback (precip)
- Once in equilibrium it enters a stable equilibrium

Vertical Velocity

near-surface vertical velocity

Red: Updrafts/surface convergence

Blue: Downdrafts/surface divergence

Black contours: Drizzle

Wang and Feingold 2009b

Global Order from Local Interactions

Cells compete or cooperate while interacting with their shared physical environment

Y-shaped surface
is region favourable
↓
Precipitation in
↓
Downdrafts, out
↓
Surface divergence

Red: Updrafts
Blue: Downdrafts/

Behaviour can be reproduced numerically with following rules:

- 1) Keep a minimum distance from one another*
- 2) Follow average direction of neighbour*

Open/Closed Cell Boundary:

Conditional composite relative to clean/polluted boundary

Ship Tracks: Self organizing systems are resilient to change

- a certain amount of random μ than hinder, self-organization
- possible implications for geoengineering

Stevens and Feingold 2009

Conclusions

Closed/Open cellular structures exhibit the features of a self-organizing system; two stable states (Baker & Charlson)

Growth rate of open cells depends on strength of rain locally, and in surroundings - coherent patterns from local interactions

Aerosol gradients → precipitation gradients → mesoscale circulations that act to remove the gradient

Massive aerosol perturbations to an open cellular system increase the cloud cover/albedo but do not change the cellular structure to a closed state (robustness)

Ship Tracks

Wang and Feingold 2009b

- Mesoscale circulation transverse to track strengthens LWP in track
- Clearing on either side of track

Mesoscale circulation at the strong aerosol gradient
 - Enhances LWP in the closed cell (polluted side)
 - Generates clearing near the boundary
(lack of counteracting outflow on the closed-cell side)

Wang and Feingold
 (2009b)

References:

- Immanuel Kant, *Kritik der Urteilskraft*, 1790
- Francis Heylighen, *The Science of Self-Organization and Adaptivity*

Clean: 65 cm^{-3}

Intermediate: 150 cm^{-3}

Polluted: 500 cm^{-3}

PDF of growth rates of a population of open cells

Effect of resolution

Coarse resolution runs also exhibit poorer vertical mixing