

Resources

Project Documentation: www.eol.ucar.edu (RAF – Field Projects)
 Allen Schanot: schanot@ucar.edu

Data Access: <u>www.eol.ucar.edu</u> (RAF – Data Access)
 – Janine Goldstein: <u>janine@ucar.edu</u>

Analysis Tools: <u>www.eol.ucar.edu</u> (RAF – Software)
 – Chris Webster: cjw@ucar.edu

New Data Release

archived 6/25/09

No Changes to state, dynamic or thermodynamic variables
Updated CDP bin sizes & concentration
Updated PCASP bin sizes & concentration
Updated FSSP concentration
Special 2DC processing
Updated O3 & CO concentrations

Position, Ground Speed & Winds

DGPS – most accurate

Unusually noisy signal due to interference
Separate data set

IRS – Schuler oscillation
Novatel GPS – Used as reference
Winds –

Use GPS corrected (WSC, WDC, etc)
IRS version for comparison (WS, WD, etc)

Reference Altitude (ALTX)

GPS Altitude: variable satellite coverage – Data gaps
Pressure Altitude: non-std lapse rate – Constant surface pressure (1013.15)
DGPS most accurate but noisy this case
Used Radar Altimeter Data as reference – Accuracy decreases with increased altitude

Reference Temperature (ATX)

OPHIR-III: less accurate / slower

In cloud as needed or at exit

Heated Rosemount: less accurate / slower
Used Unheated Rosemount

Minimal wetting in cloud
Fast enough for heat flux calculations

Reference Humidity (PI Choice)

Chilled mirror most accurate

 Slow (variable response tied to Td depression)
 Overshooting at cloud boundaries

• UV Hygrometer used in derived variables

- Fast / suitable for moisture flux calculations
- Flt-by-flt calibration against chilled mirror sensor
- Some residual in flight drift (some unsat. Cloud legs)
- Loss of accuracy at high altitude

Surface Temperature (TSURF)

Derived from radiometric measurement RSTB

 Adjusted for altitude based on mean PBL humidity

 Not valid for cloud top temperatures due to unknown altitude separation. Use RSTB.

CDP Cloud Droplet Data

 Optical window heater failure led to mid project change in probe calibration (rf04 / rf06)

Switched to 2 stage bin size calibration

Bin shift checked with flt-by-flt pollen test

Data updated in June release to archive

PCASP Aerosol Data

 Collaborated with Univ. of Wyoming on bin sizing and sample flow calibration

 Bin 1 data removed from concentration total due to excessive noise.

Data updated in June release to archive

2DC Precipitation Data

RAF FSSP-100 Cloud Probe Data

Probe modified to reduce droplet shattering

- Excessive noise in smallest bins
- First bin 6 or 8 in CONCF calculation
- Raw data matrixes intact

Probe changed to std model between rf10 & rf11
 – Noise reduced to normal
 – First bin 2 in CONCF calculation

User Supplied Data

- Drexel SO2 & DMS merged
- RAF Chemistry (O3 & CO) updated to final product
- CVI updated to final product
- Wyoming CN updated to final product
- Wyoming CCN products separate in archive
- Hawaii CN preliminary / final products separate in archive
- Hawaii non-CN aerosols products separate in archive
- Fast FSSP products separate in archive
- WCR & WCL products separate in archive
- Microwave Radiometer products separate in archive
- RAF GNI products separate in archive