Final Data Set: C-

- SO$_2$: RF01-RF14 @ 1 Hz
- DMS: RF02-RF14 @ 10 sec
- Following post-mission calibration, concentrations revised upward from initial field-computed values.
Conclusions

• DMS mixing ratio in the MBL decreases toward the coast, wind speed also decrease. Net flux of DMS to MBL is somewhat lower near the coast (ship measurements). Mean DMS mixing ratios are otherwise similar to equator levels.

• SO$_2$ mixing ratio in the MBL and FT increases near the influence of anthropogenic & volcanic emissions. Pollution just above the inversion may travel quite far offshore (RF14). In general, however, SO$_2$ concentrations in the west of -74 are similar to remote equatorial Pacific levels.
Hypothesis:

- **Coupled Ocean-Atmosphere-Land Hypothesis #2**: By physical and chemical properties of the upper ocean, upwelling systematic and noticeable effect on aerosol precursor gases size distribution over the SEP.

- Synthesis: DMS concentrations were not strongly elevated coastal upwelling zone. However, photochemical destruction seems to be dominant source of new sulfate far offshore SO2 entrainment from the free troposphere.

- Synthesis assessment still seems valid, but a careful analysis of two pollution events observed on RF12 and RF14 may
Acknowledgements

• NSF-ATM for funding our participation in VOCALS.

• NCAR-RAF staff and flight crew for facilitating our work on the C-130.

• NCAR EOL Field Project Service.