VOCALS Model Assessment

MASE 27 July 2005

Chris Bretherton

Matt Wyant

Rob Wood, U. Washington

Roberto Mechoso, UCLA

EPIC Models, 85W 20S, Oct 16-21 2001

Global models had too low and often too diffuse an inversion at 20S 85W.

Analyses from operational forecast models did better than free-running climate models, because biases are constantly corrected by observations.

PreVOCA

M. Wyant, C. Bretherton, C. R. Mechoso, and R. Wood

= Pre-VOCALS Assessment

http://www.atmos.washington.edu/~robwood/PreVOCA/index.html

- GOAL: Assess the forecast skill and biases of global/ regional model simulations of SE Pacific boundary-layer clouds and aerosols on diurnal and longer timescales.
- WHAT? Daily hindcasts for October 2006 over the SE Pacific.
- WHY? Learn how to optimally use REx, satellite and cruise data for model assessment and improvement.
- WHO? 14 modeling groups using regional and global models, including climate models run in forecast mode.
- WHEN? Data submission quasi-complete; analysis in progress, journal submission early 2009.

Model	Levels	Resolution [km] (inner domain)
NRL COAMPS	42	81 (27)
COLA RSM	28	50
IPRC Reg_CM (IRAM)	28	~25
PNNL (WRF-Chem)	44	45 (15)
UCLA (WRF)	34	45 (15)
U. Chile (WRF)	43	45
ECMWF oper. 3-12h forecast	91	~25
ECMWF 5-day forecast	91	~40
ECMWF coupled fcst ensemble	62	~125
GMAO GEOS-5 DAS	72	~56
JMA 24-30h forecast	60	~60
NCEP oper. 12-36h forecast	64	~38
UKMO oper. 12-36h forecast	50	~40
LMDZ	38	50
NCAR CAM3.5, CAM3.5+	26/30	250
GFDL	38	250

PreVOCA observational data

ISCCP FD	Radiative fluxes at surface, TOA	
TMI	LWP, WVP	
AMSR	LWP, WVP	
MODIS	Cloud fraction, optical depth, droplet size, cloud-top height	
NOAA ESRL Stratus Cruises	Temperature, moisture soundings, surface fluxes, drizzle properties, aerosols	
QuikSCAT	Ocean surface winds	
NCEP Reanalysis	Vertical velocity	
CALIPSO	Cloud top height	
COSMIC	Temperature soundings	
CloudSat	Drizzle properties	

Analysis

Shown here: Monthly mean biases

In progress: Diurnal cycle incl. Andean subsidence wave

Synoptic variability (projection onto SLP index)

PreVOCA analysis focus: Cloud and PBL structure and their dynamical setting.

10 m vector wind (m s⁻¹) - models agree reasonably well

Omega at 850 hPa (Pa s⁻¹) - also mostly not too bad

Low Cloud Fraction - models shown among best MODIS Total Cldfrac IPRC

Liquid Water Path (g m⁻²)

IPRC

80

60

40

20

ECMWF OPER

SW Downward Heat Flux (W m⁻²)

85W sounding comparisons

Conclusions from PreVOCA

- Much scatter in PBL/Sc properties among models, esp.
 the regional models: Also an issue for chemical transport?
- UKMO and ECMWF models perform best overall, correctly capturing most geographic variations in PBL depth/structure and cloud cover.
- Sharpness of inversion (even in monthly-mean) is challenging to simulate even for the highest-resolution models.

From PreVOCA to VOCA...

- VOCA: Similar protocol to preVOCA using REx observations from 15 Oct -15 Nov 2008
- More focus on chemical transport, aerosol concentrations and r_{eff} vs. in-situ and CALIPSO data.
- We will send out a detailed protocol early next year. All modeling groups are welcome (with or without chemical transport modeling capability).

REx real-time modeling

Products in field catalog from:

UKMO (40 km/17 km/NAME)

NCEP GFS (incl. UW trajectories)

NRL COAMPS

ECMWF

FLEXPART

U Chile WRF

We've done spot cloud/PBL evaluations of some forecasts

RF02 case

- 20S section (compare at 15Z 18 Oct.)
- Reality:
 - Sharp PBL top at 900-950 m (~930-940 hPa) over 70-85W
 - Solid Sc E of 78W, thinner/broken at 78-82W
- Compare UKMO, ECMWF, NCEP, WRF-Chile

UKMO (global, 40 km)

Quite good overall

Met Office Global Model Cloud Liquid Water At 15Z on 18/10/2008, from 12Z on 17/10/2008

Both models predict cloud distribution well, including break at ~80W.

ECMWF (global, 30 km, L90)

Inversion is sharp and at correct height. Max LWC is reasonable. Not much thinning at 80W compared to other lons

NCEP (global, 100 km, L64)

What stratocumulus?

COAMPS

...soso LWP distribution. Gets 'hole' but not other features.

WRF-U Chile

Theta (K) & Qvapor (g/Kg) at 20S 170CT12utc +27hr

Inversion is highly diffuse (50 hPa thick)

RF03 (21 Oct 2008)

Sloped inversion: 1000m (70W) -1500m (85W), solid Sc

UKMO

• UKMO underestimates peak LWP, but sees S edge of Sc

UKMO vertical profiles

Met Office Global Model Cloud At 12Z on 21/10/2008, from 00Z on 21/10/2008

17 km model does better job near coast

ECMWF

Correct inversion slope and decoupled structure at 85 W.

NCEP - again no low cloud!

COAMPS

LWP slightly low and clearing to S is not reproduced.

Conclusions

- PreVOCA helped catalyze a healthy REx real-time modeling effort.
- VOCA should better assess state-of-the-art simulations of chemical/aerosol transport and its feedbacks with clouds.
- SE Pacific cloud variability and aerosol feedbacks are cutting-edge challenges to the best global and regional models - VOCALS should lead the way!

