

VOCALS Quadrupole Aerosol Mass Spectrometer

Preliminary Results

Lelia Hawkins, Scripps Institution of Oceanography

On board: Dave Covert, University of Washington
Derek Coffman, Pacific Marine Environmental Laboratory
Catherine Hoyle, University of Washington

<u>Ashore:</u> Lynn Russell, *Scripps Institution of Oceanography* Timothy Bates, *Pacific Marine Environmental Laboratory* Patricia Quinn, *Pacific Marine Environmental Laboratory*

Accumulation mode composition

Vacuum Aerodynamic Diameter (nm

- Very low organic aerosol concentrations
- Radon increase indicates SEP MBL had recent land contact

Coastal Influences on SO₄ and OM

- Near shore samples are roughly double the concentrations of sulfate and organics
- Stronger off-shore winds brought increased mass (marked by arrows) from land sources (e.g. copper smelters and fossil fuel combustion)

Diurnal cycle of sulfate: boundary layer

mixing, production, or advection

Summary and Remaining Questions...

- Accumulation mode is dominated by sulfate. Organics are rarely much above instrumental noise.
- Concentrations are higher closer to shore.
- Radon variability (as a proxy for continental influence on air mass) roughly correlates with AMS measured aerosol mass.
- For short periods, diurnal trend in SO₄ is clear.
- How does the chemistry of the smaller particles (below 50 nm, not measured by AMS) differ from the accumulation mode (50 nm -1000 nm)?
- How does aerosol chemistry differ inside and outside Pockets of Open Cells (POCs)?
- What roles do boundary layer height, mixing, and advection play in the particulate sulfate concentration?
- Is continental (anthropogenic) air the major source of accumulation mode particles to the SEP?

Thank You!