MODELING DRIZZLE IN VOCALS CLOUDS
Jargen Jensen (NCAR/RAF)

The (wonderful) problems:

What aspects of the aerosol size distribution
is most important for the generation of drizzle?

Outside POCs?
(Well-mixed and upper-level)

In the strong convection on the edge of POCs?
(cumulus + anvil)

Within the POCs?
(cumulus + anvil)




Well-mixed stratocumulus:

Simplified view:

Variability in small aerosols
(rg <0.5pum)
Sulfate,

natural + pollution

Variability of giant aerosols
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Sea salt
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Well-mixed stratocumulus: Background

Simplified view:

Variability in small aerosols

(rg <0.5pum) Droplet effective radius and concentration
Sulfate, near cloud top
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Which aerosol sizes forms drizzle drops?
(Jensen and Lee, 2008, JAS Dec. issue)

Model:
Adiabatic parcel
Kinematic motion

Condensation from near
sea-surface through cloud

Start with aerosol particles

Gillespie (1975) Monte-Carlo
coalescence -
no numerical broadening

Tracking of individual aerosol
particles through coalescence
events

500 drop sizes =>
several hundred thousands

Final drop size, 7. (um)
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Which aerosol sizes contributes most to the drizzle flux?

8 m/s and
coalescence
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Model cumulus rising into stratocumulus




Model cumulus rising into stratocumulus

Photo by John Cowan, 2008




Calculate drop spectra at top of clouds in POC and out of POC (Very preliminary)

Theoretical supersaturation spectrum, N = 50 S0-3 ; 8 m/s sea salt

RR=0.0 mm/r RR=21.2 mm/hr
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Calculate drop spectra at top of clouds in POC and out of POC (Very preliminary)

Theoretical supersaturation spectrum, N = 12 S0-3 ; 8 m/s sea salt

RR=0.0 mm/r RR=23.9 mm/hr
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VERY - VERY - PRELIMINARY

GOAL:

DETERMINE IF GIANT SEA-SALT AEROSOL PARTICLES ARE
IMPORTANT FOR DETERMINING DRIZZLE IN VOCALS
STRATOCUMULUS.

COMBINE OBSERVATIONS AND MODELING (CONDENSATION +

STOCHASTIC COALESCENCE)

EXAMINE POC VS. NON-POC CONDITIONS

THE END




