MODELING DRIZZLE IN VOCALS CLOUDS

Jørgen Jensen (NCAR/RAF)

The (wonderful) problems:

What aspects of the aerosol size distribution is most important for the generation of drizzle?

Outside POCs? (Well-mixed and upper-level)

In the strong convection on the edge of POCs? (cumulus + anvil)

Within the POCs? (cumulus + anvil)

Well-mixed stratocumulus: Background

Sea salt

Well-mixed stratocumulus: Background

Simplified view:

Variability in small aerosols (r_d < 0.5 µm) Sulfate, natural + pollution

Variability of giant aerosols (r_d > 0.5 µm) Sea salt

Which aerosol sizes forms drizzle drops? (Jensen and Lee, 2008, JAS Dec. issue)

Model:

Adiabatic parcel

Kinematic motion

Condensation from near sea-surface through cloud

Start with aerosol particles

Gillespie (1975) Monte-Carlo coalescence no numerical broadening

Tracking of individual aerosol particles through coalescence events

500 drop sizes => several hundred thousands

Which aerosol sizes contributes most to the drizzle flux?

Jensen and Lee, 2008

Model <u>cumulus</u> rising into stratocumulus

Model <u>cumulus</u> rising into stratocumulus

Photo by John Cowan, 2008

Calculate drop spectra at top of clouds in POC and out of POC (Very preliminary)

Theoretical supersaturation spectrum, $N = 50 S^{0.3}$; 8 m/s sea salt

w = 1 m/s z_{top} = 1350 m (h=579 m) t = 579 s

w = 1 m/s + 0 m/s z_{top} = 1350 m (h=579 m) t = 579 s + 900 s

Calculate drop spectra at top of clouds in POC and out of POC (Very preliminary)

Theoretical supersaturation spectrum, $N = 12 S^{0.3}$; 8 m/s sea salt

w = 1 m/s z_{top} = 1350 m (h=579 m) t = 579 s

w = 1 m/s + 0 m/s z_{top} = 1350 m (h=579 m) t = 579 s + 900 s

VERY - VERY - PRELIMINARY

GOAL:

DETERMINE IF GIANT SEA-SALT AEROSOL PARTICLES ARE IMPORTANT FOR DETERMINING DRIZZLE IN VOCALS STRATOCUMULUS.

COMBINE OBSERVATIONS AND MODELING (CONDENSATION + STOCHASTIC COALESCENCE)

EXAMINE POC VS. NON-POC CONDITIONS

THE END