

VOCALS-UK

Pls:	Hugh Coe (Manchester) and Phil Brown (Met Office)
Manchester:	Tom Choularton; Grant Allen, James Dorsey, Gordon McFiggans; Paul Connolly; Keith Bower; Jonathan Crosier; Mike Flynn, Martin Gallagher; Lorenzo Labrador, Hugo Ricketts, Geraint Vaughan, Paul Williams
Leeds:	Mark Bart, Alan Blyth; Alan Gadian; Patricia Krejcl, James McQuaid
Reading:	Julia Slingo; Len Shaffrey; Thomas Toniazzo
Met Office:	Steve Abel, Paul Barrett
Berlin:	Thomas Ruhtz

Aerosol and Cloud Measurem LWC: Johnson Williams, Nevzerov LWC, Nevzerov TWC Aerosol and Cloud Measurements: Bulk

Total Water Content: Liquid + Ice + Vapour (Lynman- α absorption hygrometer)

CCN: Dual channel continuous flow

VACC: Size distribution as a function of thermal volatility

Condensation Particle Counter: TSI-3025A Aerosol concentration > 3 nm

Aerosol Mass Spectrometer: Mass of non-refractory components of aerosol particles as a function of size (50 - 500 nm)

Single Particle Soot Photometer (SP2): Black carbon mass (single particle basis)

Filters: Sub and Supermicron

CVI: Counter Flow Virtual Impactor (Residual particle & vapour from cloud drops)

Nephelometer: Aerosol scattering (dry) at $\lambda = 450,550,700$ nm

Wet Nephelometer: Aerosol scattering f(RH) at $\lambda = 450,550,700$ nm

PSAP: Aerosol absorption at $\lambda = 567$ nm

Additional Instrumentation

In addition to this instrumentation (see next slides) the aircraft will be fitted with

- Core chemistry: CO, O₃, NO_x, SO₂
- PAN
- Thermodynamics: Temperature, Humidity, Pressure.....
- Dynamics: Turbulence probe
- Sondes
- Video Cameras: Upward, Downward, Forward, Rear

Radiation Instrumentation

Microwave Radiometer (MARSS): Upward and downward pointing (+40 to -40 deg) 5 channels 89-183 GHz Derive LWP, T + q structure

Shortwave Spectrometer (SWS): Pointable high resolution spectrometer measuring radiance across spectral range 0.3 – 1.7 μm MODIS type retrievals of cloud properties

Spectral Hemispheric Irradiance Measurement (SHIM): As SWS but hemispherically integrating. Mounted on top and bottom of aircraft. Derive cloud optical depth

Broad Band Radiometers: Derive cloud optical depth

Heiman Radiometer: Sea surface temperature

Airborne Research Interferometer Evaluation System (ARIES): Interferometer producing high resolution spectra $18 - 3.3 \mu m$. Retrieve profiles of gases (CO₂, H₂O, O₃ etc) and sea surface temperature. Cloud info incl cloud top temp.....

NERC Do-228 Airborne Research and Survey Facility (ARSF)

LIDAR: A Leosphere (ALS300) aerosol backscatter lidar will be installed on the Do-228

ASP: accumulation mode Optical Aerosol Sizing Probe (0.1<D_p<10 µm, 40 channels)

Hyperspectral Imaging:

The Eagle and Hawk hyperspectral sensors are the most They are pushbroom systems Eagle has a 1000 pixel swath width, covering the visible and near infra-red spectrum 400 - 970nm. Spectral resolution of the sensor is 2.9nm

The AISA Hawk has a wavelength range (970 - 2450nm); it has 320 pixels, 244 spectral pixels and a spectral resolution of 8nm

AIMMS: Turbulence sensor

POLARIMETER: Measurement of spectrally resolved full Stokes' vectors

Flights conducted so far:

- 26 Oct VA01 test flight along 20° S to 74° 38' W
- 28 Oct VA02 test flight for polarimeter.
- 30 Oct VA03 flight over Ron Brown coord with 146.
- 31 Oct VA04 20 °S mission with C130 below, 146 above.
- 2 Nov VA05 Free tropospheric aerosol with a succession of profiles.
- 3 Nov VA06 coordinated with 146: Peruvian border then 75W 20S with 146 below
- 4 Nov VA07 20S mission with 5 aircraft, 76W at 15000 back at 11000 and 10000
- 5 Nov VA08 pollution profiling along coast.
- 6 Nov VA09 test flight out to alpha at 15000' then 20 S

BAe 146 Flights completed to date:

• 20-South cross sections

on B408(26/10); B410(29/10); B412(31/10); B414(4/11)

- 4, all with different characteristics in terms of:
 - Well-mixed and decoupled boundary layers
 - Homogeneity of stratocumulus
 - Drizzle occurrence
- 2 intercomparisons with C-130
- 2 low-level returns

2 high-level sonde-dropping (78W to 72W)

- POC studies
 - 2 completed
 - one sampled subsequently by C-130 (quasi-Lagrangian)
 - One at sunset (**B409**) and one at sunrise (**B415**)
- Pollution (non)-plumes (**B413**)
 - Coastal survey in vicinity of Ilo smelter. Speculation that it had been turned off were later found to be true!

B412 and **B414 B408** and **B410 B412** and **B414**

(**B409** and **B415**) (**B409**)

Possible flight missions for the remaining period

- 20-S cross section
 - At least 2 and possibly 3 more
 - Coordination with G-1 on one of these (Sat 8th?)
- POC studies
 - At least one more (maybe Friday 7th)
- Lagrangian studies
 - Opportunities for combined missions with C-130, day-flights during the last week
- Last flight day, Fri 14th Nov

D20081031_141620_P.3 082149483 VOCALS, B412 none, none

Data Highlights: An example of POC mission (B409)

Aerosol composition below cloud during POC mission B409

Aerosol size distribution below cloud during POC mission B409

B409 - In Cloud

Unified Model performance example

Model has cloud inhomogeneities but often artefacts – change of BL height between grid levels (increase from 38 to 70 model levels in 2009).

Unified Model performance example

Model has cloud inhomogeneities but often artefacts – change of BL height between grid levels (increase from 38 to 70 model levels in 2009).

Seems to miss larger POC/rift regions but may get some realistic structure parallel to Peru coast