

VOCALS-UK

PIs: Hugh Coe (Manchester) and Phil Brown (Met Office)

Manchester: Tom Choularton; Grant Allen, James Dorsey, Gordon McFiggans; Paul Connolly; Keith Bower; Jonathan Crosier; Mike Flynn, Martin Gallagher; Lorenzo Labrador, Hugo Ricketts, Geraint Vaughan, Paul Williams

Leeds: Mark Bart, Alan Blyth; Alan Gadian; Patricia Krejcl, James McQuaid

Reading: Julia Slingo; Len Shaffrey; Thomas Tonizazzo

Met Office: Steve Abel, Paul Barrett

Berlin: Thomas Ruhtz

Aerosol and Cloud Measurements: Bulk

LWC: Johnson Williams, Nevzerov LWC, Nevzerov TWC

Total Water Content: Liquid + Ice + Vapour (Lynman- α absorption hygrometer)

CCN: Dual channel continuous flow

VACC: Size distribution as a function of thermal volatility

Condensation Particle Counter: TSI-3025A Aerosol concentration > 3 nm

Aerosol Mass Spectrometer: Mass of non-refractory components of aerosol particles as a function of size (50 – 500 nm)

Single Particle Soot Photometer (SP2): Black carbon mass (single particle basis)

Filters: Sub and Supermicron

CVI: Counter Flow Virtual Impactor (Residual particle & vapour from cloud drops)

Nephelometer: Aerosol scattering (dry) at $\lambda = 450, 550, 700$ nm

Wet Nephelometer: Aerosol scattering f(RH) at $\lambda = 450, 550, 700$ nm

PSAP: Aerosol absorption at $\lambda = 567$ nm

146 – Cloud Physics

Additional Instrumentation

In addition to this instrumentation (see next slides) the aircraft will be fitted with

- **Core chemistry:** CO, O₃, NO_x, SO₂
- **PAN**
- **Thermodynamics:** Temperature, Humidity, Pressure.....
- **Dynamics:** Turbulence probe
- **Sondes**
- **Video Cameras:** Upward, Downward, Forward, Rear

Radiation Instrumentation

Microwave Radiometer (MARSS): Upward and downward pointing (+40 to -40 deg)
5 channels 89-183 GHz
Derive LWP, T + q structure

Shortwave Spectrometer (SWS): Pointable high resolution spectrometer measuring
radiance across spectral range 0.3 – 1.7 μ m
MODIS type retrievals of cloud properties

Spectral Hemispheric Irradiance Measurement (SHIM): As SWS but hemispherically
integrating. Mounted on top and bottom of aircraft.
Derive cloud optical depth

Broad Band Radiometers: Derive cloud optical depth

Heiman Radiometer: Sea surface temperature

Airborne Research Interferometer Evaluation System (ARIES): Interferometer
producing high resolution spectra 18 – 3.3 μ m. Retrieve profiles of gases (CO₂, H₂O,
O₃ etc) and sea surface temperature. Cloud info incl cloud top temp.....

NERC Do-228 Airborne Research and Survey Facility (ARSF)

LIDAR: A Leosphere (ALS300) aerosol backscatter lidar will be installed on the Do-228

ASP: accumulation mode Optical Aerosol Sizing Probe ($0.1 < D_p < 10 \mu\text{m}$, 40 channels)

Hyperspectral Imaging:

The Eagle and Hawk hyperspectral sensors are the most They are pushbroom systems Eagle has a 1000 pixel swath width, covering the visible and near infra-red spectrum 400 - 970nm. Spectral resolution of the sensor is 2.9nm

The AISA Hawk has a wavelength range (970 - 2450nm); it has 320 pixels, 244 spectral pixels and a spectral resolution of 8nm

AIMMS: Turbulence sensor

POLARIMETER: Measurement of spectrally resolved full Stokes' vectors

Flights conducted so far:

26 Oct VA01 test flight along 20° S to 74° 38' W
28 Oct VA02 test flight for polarimeter.
30 Oct VA03 flight over Ron Brown coord with 146.
31 Oct VA04 20°S mission with C130 below, 146 above.
2 Nov VA05 Free tropospheric aerosol with a succession of profiles.
3 Nov VA06 coordinated with 146: Peruvian border then 75W 20S with 146 below
4 Nov VA07 20S mission with 5 aircraft, 76W at 15000 back at 11000 and 10000
5 Nov VA08 pollution profiling along coast.
6 Nov VA09 test flight out to alpha at 15000' then 20 S

Yesterday....

Dornier Flight Track VA10, 2008/11/06

Arica - EZ AEROSOL LIDAR - 2008/11/06 - 18:38:14 - 19:15:45 - dz=15.0m - PR2 (ch0)

BAe 146 Flights completed to date:

- 20-South cross sections
 - 4, all with different characteristics in terms of:
 - Well-mixed and decoupled boundary layers
 - Homogeneity of stratocumulus
 - Drizzle occurrence
 - 2 intercomparisons with C-130 **B412 and B414**
 - 2 low-level returns **B408 and B410**
 - 2 high-level sonde-dropping (78W to 72W) **B412 and B414**
- POC studies
 - 2 completed **(B409 and B415)**
 - one sampled subsequently by C-130 (quasi-Lagrangian) **(B409)**
 - One at sunset (**B409**) and one at sunrise (**B415**)
- Pollution (non)-plumes (**B413**)
 - Coastal survey in vicinity of Illo smelter. Speculation that it had been turned off were later found to be true!

Possible flight missions for the remaining period

- 20-S cross section
 - At least 2 and possibly 3 more
 - Coordination with G-1 on one of these (Sat 8th?)
- POC studies
 - At least one more (maybe Friday 7th)
- Lagrangian studies
 - Opportunities for combined missions with C-130, day-flights during the last week
- Last flight day, Fri 14th Nov

Data Highlights: An example of a 20S Lagrangian (B412)

Data Highlights: An example of a 20S Lagrangian (B412)

Data Highlights: An example of a 20S Lagrangian (B412)

D20081031_131508_P.1 082149399 VOCALS, B412 none, none

D20081031_134507_P.4 082149359 VOCALS, B412 none, none

D20081031_141620_P.3 082149483 VOCALS, B412 none, none

Data Highlights: An example of a 20S Lagrangian (B412)

Data Highlights: An example of a 20S Lagrangian (B412)

Data Highlights: An example of a 20S Lagrangian (B412)

Data Highlights: An example of POC mission (B409)

B409 - Below Cloud

Aerosol composition below cloud during POC mission B409

Aerosol size distribution below cloud during POC mission B409

B409 - In Cloud

Unified Model performance example

Model has cloud inhomogeneities but often artefacts – change of BL height between grid levels (increase from 38 to 70 model levels in 2009).

Unified Model performance example

Model has cloud inhomogeneities but often artefacts – change of BL height between grid levels (increase from 38 to 70 model levels in 2009).

Seems to miss larger POC/rift regions but may get some realistic structure parallel to Peru coast