Oceanographic Sampling in VOCALS REx

rweller@whoi.edu

The ocean setting - the Southeast Pacific (SEP)

- Persistent trade winds, coastal upwelling.
- Trade winds directionally steady but vary in speed, with periods of low winds
- Low level of synoptic weather systems
- Peru/Chile Current flowing north and northwest.

• A strongly evaporative, moderately warmed region producing temperate, salty surface water.

- Fresher water moving in below the surface layer.
- Below that a more saline layer and a second salinity minimum.
- Coastal upwelling.
- Westward propagating eddies originating from coast.
- VOCALS' goal of understanding controls on SST sets a focus on the surface layer

• VOCALS partners (Chile, Peru, France - PRIMO, SOLAS) interest is on the oxygen minimum layer below

The ocean setting

October-November: Deep (150 m), cool layer transitioning to warm, shallow (40 m) layer

Mixed layer depths 0.1, 0.5, 1.0 delta T from SST

3 year displacement at 10 m depth, a mean of ~ 3 cm/sec

3 year displacement at 350 m depth, a mean of \sim 1 cm/sec

In upper thermocline, 1-2 cm/sec annual mean Flows to NW; low rates of advection. Long residence time?

Eddy variability superimposed on the mean.

Steady Trade Winds to the NW, wind-driven surface flow to the Southwest

One-year displacements or progressive vector diagrams of velocities at 10 and 20 m relative to that at 130 m, as well as for the velocity at 130 m.

The surface water moves offshore under the influence of the wind.

~5 cm s⁻¹ surface layer relative to thermocline.

QuikScat winds and TMI SST fields used to estimate the advective component of heat flux due to Ekman transport across SST gradients. Calculation done for weekly fields and then combined to get an annual average. The steadiness of the winds implies that the mean of the high-frequency product is close to the product of the means.

Ekman Advection along SST gradients

Color Contours: Annually averaged component of the heat flux due to advection by Ekman transport

Gray Contours: Annually averages SST

Arrows: Annually averaged Ekman transport

Ekman Advection = 6 +/- 5 W/m²

Surface forcing from buoy driving a one-dimensional ocean model (PWP) produces a surface layer that is too warm and too salty.

Additional cooling and freshening is needed. Possible mechanisms:

- Ekman (wind-driven surface layer) transport offshore of coastal water
- Open ocean downwelling/upwelling (Ekman pumping)
- Mixing with low saline water below
- Geostrophic currents (advection)
- Eddy processes, including horizontal transport enhanced vertical mixing

Remote as well as local forcing is possible, possible links to ENSO variability.

Kelvin waves->coastal
waves-> Rossby waves
Displacement of S Pacific
high pressure center

Integrated Heat Content Equation

$$\int_{0}^{1 \text{year}} \left(\frac{Q_{net}}{C_P \rho_0} - \int_{z_0}^{0} \left(u \cdot \nabla T + w_E \frac{\partial T}{\partial z} + \frac{\partial \overline{u'T'}}{\partial x} + \frac{\partial \overline{v'T'}}{\partial y} \right) dz - \kappa_v \frac{\partial T}{\partial z} \Big|_{z=z_0} \right) dt \approx 0$$
Surface Flux Advection Ekman Pumping Eddy Flux Vertical Diffusivity

Eddies – biology and clouds

Long-lived eddies:

- Transport or enhancement of nutrients
- Enhanced local productivity
- Change in upper ocean optical properties
- Biogenic aerosols DMS
- Local SST and current signature

(impacting fluxes via delta U and delta T)

A progression of daily composite wind speeds from QuikScat in 2001. The darkest blue contour represents wind speeds below 2m s⁻¹ (contour increment is 2 m s⁻¹).

Diurnal warming linked to "sagging" of the Trade Winds.

Does the whole dark blue region warm 2°C? If so, what impact on clouds?

Transients in wind lead to near-inertial oscillations and probable shear-driven mixing local inertial period ~36 hours

Shallow, near-inertial oscillations

Sampling issues

- Relatively shallow ocean mixed layer, but in transition
 - Good vertical resolution in upper 300 m
 - Good temporal resolution in upper 300 m
 - Good surface fluxes
 - High stability and strong property gradients at base
- Eddies
 - Large scale, slow
 - Embedded, enhanced mixing
 - Biological as well as physical signature
 - Goal of locating a mesoscale feature for joint ship-A/C study
- Background geostrophic flow field
 - Large scale, slow
- Transients may contribute to dynamics
 - Diurnal
 - Near-inertial
- Representativeness
 - In space
 - In time

Two moorings

- WHOI Stratus Ocean Reference Station (20°S, 85°W)
 - Good surface meteorology/fluxes
 - High vertical resolution (U, T, S) down to 310m, sparse down to 1500m
 - Additional mixing/dissipation obs (Zappa/Farrar)
- SHOA DART Surface mooring of DART installation (20°S, 75°W)
 - Good surface meteorology/fluxes
 - High vertical resolution (T)
 - Sparse vertical resolution (S)
 - No currents

Moored turbulence measurements (Zappa, Farrar, Weller)

Approach:

• Use pulse-coherent ADCPs to measure velocity microstructure (1.3-cm spatial resolution over a 1m horizontal span) to infer turbulent kinetic energy dissipation.

• Use dissipation with other moored measurements to:

- produce more direct estimates of vertical turbulent heat flux (for understanding SST)
- examine kinetic energy balance of near-inertial waves, including forcing, dissipation, and vertical propagation
- examine dissipation and vertical mixing associated with eddies

STRATUS 9TH DEPLOYMENT

AX. DIA. BUOY WATCH CIRCLE = 3.7 N.Mile

2.7 m Surlyn Foam MOBS Buoy with

MAX. DIA. BOOT WATCH CINCLE = 3.7 NUMILES	(2) IMET	/ARGOS Telemetry,
Position: 19'46.5'S, 85'29.0'W		ting Sea Surface Temperature Sensor
	(4) Stan	d Alone HRH
SBE-39 Sea Surf. Temp.		
	2 tr 1060 n foa	m hull below chine
Bridle with IMET Temp. Sensors at 1.0 m Depth, DEPTH and Backup ARGOS Transmitter 2 m	Brancker x	r 420 TC
3 m		R1060 -UP-SHORT TB
3.7 m		/ Load Bar
5 m		R1060 -DOWN-SHORT TB
6 m		R1060 -UP-SHORT TB
6.75 m 7.9 m		/ Load Bar R1060
10 m		ADCM - Heads Up
12 m		R1060 -DOWN-SHORT TB
12.5 m	-	EKADCMs - Heads Up
15 m	T	DCP - Heads Up
16 m	MicroCat w	/ Load Bar
20 m	r	ADCM - Heads Up
25 m		JP-SHORT TB
27.5 m		EKADCMs - Heads Up
30 m	T	/ Load Bar
32.5 m		ADCM - Heads Up
32.5 m 35 m		JP-SHORT TB
37.5m		/ Load Bar
	I	
40 m	ſ	/ Load Bar
42.5 m	T	EKADCMs - Heads Up
45 m	VMCM in 3	/4" cage
50 m	SONTEK AD	DCM — Heads Down
55 m	VMCM in 3	/4" cage
62.4 m	Ψ.	/ Load Bor
	1	
67.4 m	T	EKADCMs — Heads Up
70 m		AMPED TO WIRE
77.5 m		AMPED TO WIRE
85 m	1	/ Load Bar
87.5 m 92 m		EKADCMs - Heads Up AMPED TO WIRE
96.3 m		/ Load Bar
100 m	SBE 39 CL	AMPED TO WIRE
107.6 m	T	EKADCMs - Heads Up
115 m		AMPED TO WIRE
130 m	1	/ Load Bar
135 m	RDI WORKH	ORSE ADCP
145 m	VMCM in 3	/4" cage
160 m	SeaCat w/	
175 m	1	AMPED TO WIRE
183 m	VMCM in 3	/4 cage
190 m	SeaCat w/	Load Bar
220 m	SeaCat w/	Load Bar
	1	
235m	VMCM in 3	
250 m	SeaCat w/	Load Bar
290 m	VMCM in 3	/4" cage
710	i carcat m/	Lord Dec
310 m	SeaCat w/	Load Bar
350 m	VMCM in 3	/4" cage
400 m	SRE 30 CL	AMPED TO WIRE
450 m		AMPED TO WIRE
852 m	VMCM in 3	/4" cage
\sim	L A	\sim
\sim	$\sim \sim \sim$	\sim

VOCALS REx: Ships

Oct 2- Nov 3, 2008

On station within operating area, exact location determined based on Leg 1 survey.

RV Jose Olaya

VOCALS REx: Olaya

HERIC	In land	Surface measurement	Ta, Humidity, SLP, Wind speed/direction, Cloudiness (cloud cover, types), Weather conditions
P 1		Vertical profile	Ta, Humidity, Pressure, Wind speed/direction
ATMOSPHERIC	On cruise	Surface measurement	Ta, Humidity, SLP, Wind sp eed/direction, Cloudiness (cloud cover, types), Long /Short Wave Radiation, Weather conditions
~ ∞	Coastal	Vertical profile measurement	Ta, Huggiditys Bsessyrphyting speptialiteration
OCEANOGRAPHIC & BIOGEOCHEMISTRY	On cruise Vertical profile		Tw, Salinity, Horizontal Velocities, O ₂ , Fluorescense, Chlor -a, pCO ₂ Nutrients (NO ₃ , PO ₄ , SiO ₃ , SiO ₄), Phyto & Zooplancton (eggs -larvae)
		Tw, Salinity, Vertical Velocities O ₂ , Fluo rescense, Chl or-a, pCO ₂ Nutrients (NO ₃ , PO ₄ , SiO ₃ , SiO ₄), Phytoplankton, Zooplancton (eggs -larvae)	
FISHERY RESOURCES	Acoustic	c measurements	Ecotraces of fish distribution and abundance, zooplancton
	Laboratory Analysis		Post processing of acoustic data If trawl sampling: fish biology and stomach content analysis

VOCALS REx: *R H Brown* Leg 1 (NOAA Climate Observation Program)

Depart Miami Arrive Colon, people

Night transit Panama

Arrive SHOA buoy,

Arrive WHOI buoy Buoy deploy, recover Buoy-ship

Sampling Begin survey to east Arrive SHOA buoy Buoy recover, deploy Buoy-ship

Leg 1 VOCALS R H Brown

Oct 2 Oct 7 xfer Oct 7 Canal Oct 14 begin survey Oct 18 Oct 18-24

comparisons

Oct 24 Oct 27 Oct 27-Nov 2

comparisons

Nov 2

Research groups: VOCALS REx: *R H Brown* Leg 1

- WHOI Weller/Straneo moorings, UCTD, Argo Floats, drifters, ADCP
- LDEO/WHOI Zappa/Farra moored instrumentation
- PMEL Sabine, moored PCO₂
- INOCAR Ecuadorian Navy Inst of Oceanography
- IMARPE Inst for Marine Research, Peru
- SHOA Chilean Navy Hydrographic and Ocean. Service, DART mooring
- NOAA ESRL Fairall air-sea fluxes, radiosondes, cloud opt. properties
- NOAA ESRL Brewer scan Doppler LIDAR
- NOAA ESRL Feingold lidar-cloud radar aerosol-LWP
- NCSU Yuter C-band radar, drizzle
- U Miami Albrecht, cloud drizzle/aerosol interactions; Minnett radiometric SST
- U Miami Zuidema, cloud remote sensing
- Bigelow Matrai, DMS production
- U Washington/NOAA PMEL/SIO Covert/Bates, aerosols
- CU Volkamer, atmos. Chemistry
- UH Huebert DMS flux
- PMEL underway DMS, underway PCO2
- U Calgary Norman, aerosol
- NOAA- Teacher-at-Sea Heavy equipment:
- · Mooring winch, anchors, and related
- 7 Vans: 1) Albrecht/Miami; 2) PMEL1/Aerosol/Chem; 3) PMEL2/Aerosol/Phys;
 4) PMEL3/Chem; 5) PMEL4/spares; 6) WHOI/mooring; 7) ESRL/lower atmos
- Radiosondes/helium
- Instruments on upper decks

Eddy mapping, location

Ê

RB_07_09_STRATUS os75bb (2007/10/24 09:40:43 to 2007/10/27 09:40:41 UTC), 22-75m

Nazca Ridge?

Survey 2° swath between 75° W and 85°W

Advective terms, long-term flow

Moorings WHOI IMET (since Oct 2000) SHOA DART (since Oct 2006)

Argo floats – with oxygen 10 for VOCALS Plus existing, annual deployments Argo floats, surface drifters Plus remote sensing

VOCALS REx: R H Brown Leg 2

(NOAA Climate Prediction Program for the Americas)

Nov 3-6 In port in Arica, meet with A/C investigators, decide on target mesoscale feature(s); unload mooring equipment and recovered mooring hardware; people on/off

Nov 6	Depart Arica
Nov 8	On station, nominal target
	(20°S, 78°W)
Nov 27	Depart for Arica
Nov 29	Arrive Arica
Nov 29-30	Unload

In the original plan: two ships, mesoscale survey plus central time series ship; combined assault on mesoscale, turbulence, upper ocean heat budget, upper ocean biology.

Now, we need to rethink Phase 2. Can folks on RH Brown meet tonight?

Leg 2 VOCALS R H Brown

On station within operating area, exact location determined based on Leg 1 survey.

ZON

ASIN

Nov 8-27 On station, nominal target (20°S, 78°W)

One station? Where? East of Nazca Ridge? West of Nazaca Ridge, near long term site? How much work with A/C?

Connecting ocean sampling to modeling What do the modelers need?

- Real time?
 - What data is needed for assimilation, validation, initialization?
 - Moored meteorology IMET
 - Remote sensing (altimetry, SST, wind, color)
 - Surface drifters
 - Argo floats
 - Shipboard sampling (physics, biology)
- Testing models during post Rex analyses
 - Time series
 - Sections along 20°S
 - Argo floats

An oceanographer's wants From the A/C – synoptic maps of surface fluxes

From remote sensing – SST (TMI), altimetry, surface winds

From the modelers – dialog and guidance about sampling the ocean mesoscale - insight into the nonlinearity of the upper ocean and air-sea

coupling

on diurnal and near-inertial

time

scales -- insight into the spatial

homogeneity

of the region (e.g. The