VOCALS Regional Experiment (REx) Goals and Hypotheses

Robert Wood, University of Washington many contributors

THE VOCALS STRATEGY

VOCALS Regional Experiment (REx)

- Joint NOAA/NSF funded field program in October/November 2008. Additional support from ONR and DoE and international agencies
- REx will provide observations of poorly understood aspects of the SEP climate system
- Main platforms: NSF C-130, NOAA Ronald H Brown, CIRPAS and Chilean Twin Otter, DoE G-1, FAAM BAe-146, Chilean land site, Peruvian ship, second (UNOLS) ship.

VOCALS-REx Platforms and

Aircraft: NSF C-130 CIRPAS Twin Otter DoE G-1 UK BAe-146

Ships: NOAA Ronald H Brown UNOLS Wecoma Jose Olaya

Land sites

Meteorological context

SST (Reynolds)

Surface winds (Quikscat)

Sep-Nov climatology

E-W transect 20°S

VOCALS-REx Science Goals

1. AEROSOL-CLOUD-DRIZZLE GOALS

Factors controlling the stratocumulus cloud thickness, cover, and optical properties over the SE Pacific

2. COUPLED OCEAN-ATMOSPHERE-LAND GOALS

Physical and chemical links between the topography, coastal oceanic upwelling and the marine boundary layer

SEP stratocumulus in GCMs

Poor representation of the vertical structure of stratocumulus-topped boundary layers – improved parameterization central to improved global models

AEROSOL-CLOUD-PRECIPITATION HYPOTHESES							
#	Hypothesis						
1A	Variability in the physicochemical properties of aerosols has a measurable impact upon the formation of drizzle in stratocumulus clouds over the SEP.						
1B	Precipitation is a necessary condition for the formation and maintenance of pockets of open cells (POCs) within stratocumulus clouds.						
1C	The small effective radii measured from space over the SEP are primarily controlled by anthropogenic, rather than natural, aerosol production, and entrainment of polluted air from the lower free- troposphere is an important source of cloud condensation nuclei.						
1D	Depletion of aerosols by coalescence scavenging is necessary for the maintenance of POCs.						

1A Variability in the physicochemical properties of aerosols has a measurable impact upon the formation of drizzle in stratocumulus clouds over the SEP.

EPIC data, Bretherton et al. (2004)

1BPrecipitation is a necessary condition for the
formation and maintenance of pockets of open cells
(POCs) within stratocumulus clouds

 Cloud albedo strongly dependent upon open/closed cells

• Strong precipitation associated with open cell structure

 In-situ aircraft measurements of the mesoscale dynamics needed

Sandra Yuter, NCSU

POC formation

Kim Comstock

Flight-plan for C-130 *POC-Drift* missions

1C The small effective radii measured from space over the SEP are primarily controlled by anthropogenic, rather than natural, aerosol production, and entrainment of polluted air from the lower freetroposphere is an important source of cloud condensation nuclei.

CLOUD DROPLET CONC. from MODIS (Ann. Mean 2001-2004)

Cloud Microphysical Variability

- Chile is world's largest copper producer
- Copper smelting SO₂ emissions from Chile (1.5 TgS yr⁻¹) comparable to total SO₂ emissions in Germany
- 90% of Chilean SO2 emissions from seven smelters!
- Andes mountains prevents eastward transport

VOCALS-REx Cross-Section Sampling

Combined NOAA Ronald H Brown and NSF C-130 Missions

- direct evaluation of GCM lower tropospheric structure

1D Depletion of aerosols by coalescence scavenging is necessary for the maintenance of POCs

Loss rate of CCN due to drizzle

- Accurate precipitation rate obs. and microphysical measurements required (C-130)
- Cloud droplet concentration budget estimates
- Microphysical modeling
- Captured in GCMs?

COUPLED OCEAN-ATMOSPHERE LAND						
#	HYPOTHESS					
2A	Oceanic mesoscale circulations play a major role in the transport of heat and fresh water from coastally upwelled water to regions further offshore.					
2B	Upwelling, by changing the physical and chemical properties of the upper ocean, has a systematic and noticeable effect on aerosol precursor gases and the aerosol size distribution.					
2C	The diurnal subsidence wave ("upsidence wave") originating in northern Chile/southern Peru has an impact upon the diurnal cycle of clouds and provides a useful framework for analysis of numerical model performance on diurnal time scales.					
2D	The entrainment of cool fresh intermediate water from below the surface layer during mixing associated with energetic near- inertial oscillations generated by transients in the magnitude of the trade winds is an important process to maintain heat and salt balance of the ocean surface layer.					

Ocean surface heat budget

Reanalaysis surface fluxes are not accurate, for example, NCEP has a longer, cooler winter and little net heating of the ocean.

Sea surface temperature and salinity

Surface forcing from buoy driving a onedimensional ocean model (PWP) produces a surface layer that is too warm and too salty.

Bob Weller

Oceanic mesoscale circulations play a major role in the transport of heat and fresh water from coastally upwelled water to regions further offshore

 Mesoscale ocean eddies form in coastal upwelling regions and propagate westward

2A

- Their impact on the heat, nutrient, and freshwater budgets is poorly known
- They are not resolved in coupled GCMS

SST at IMET Buoy (20°S, 85°W)

VOCALS-REx: Ship sampling

- Phase 1 (3 wks): RHB sits for 6 days at each buoy (20°S, 85+75°W) and concertina transit between the buoys; Wecoma carries out a survey of the eddy-genesis region.
- Phase 2 (3 wks): Wecoma surveys oceanic mesoscale variability around the RHB (using SeaSoar)

SeaSoar TUV (towed undulating vehicle)

- Upper ocean horizontal and vertical structure
- oxygen, nitrate, chlorophyll, salinity
- radiative properties
- mesoscale ocean eddy structure

Examples from EPIC, Wijisekera, OSU

Upwelling, by changing the physical and chemical properties of the upper ocean, has a systematic and noticeable effect on aerosol precursor gases and the aerosol size distribution

2B

The diurnal subsidence wave ("upsidence wave") originating in northern Chile/southern Peru has an impact upon the diurnal cycle of clouds and provides a useful framework for analysis of numerical model performance on diurnal time scales.

 Strong diurnal cycle in lower tropospheric subsidence in MM5

2C

- Strong diurnal cycle in MBL and clouds observed during EPIC (+satellites)
- RHB, Chilean land site will make measurements of the free-troposphere at different distances from the coast

Garreaud and Muñoz

-0.2 +0.2 +0.8 cm/s

AEROSOL-CLOUD-PRECIPITATION HYPOTHESES

#	Hypothesis	Platforms	Obs. PI Teams
1A	Variability in the physicochemical properties of aerosols has a measurable impact upon the formation of drizzle in stratocumulus clouds	C-130, RHB, Twin Otter, G-1, 146	Howell/Huebert/Clarke Bandy/Blomquist Wood/Bretherton Covert/Bates/Quinn Albrecht Feingold Daum
1B	Precipitation is a necessary condition for the formation and maintenance of POCs within stratocumulus clouds	C-130, RHB, G-1	Wood/Bretherton Fairall/Yuter Leon/Snider Feingold Albrecht Daum
1 C	The small <i>r</i> _e measured from space is primarily controlled by anthropogenic rather than natural aerosol production; entrainment of polluted air from the FT is an important source of CCN	C-130, RHB, G-1, Twin Otter, 146 Land site	Huebert/Clarke Covert/Bates/Quinn Gallardo/Cordova Zuidema Wood/Thorton/Zaveri Twohy/Collett/Anderson
1 D	Depletion of aerosols by coalescence scavenging is necessary for the maintenance of POCs	C-130	Leon/Snider Feingold

COUPLED OCEAN-ATMOSPHERE LAND

#	Hypoth Soft Bar	Platform s	Obs. PI Teams		
2A	Oceanic mesoscale circulations play a major role in the transport of heat and fresh water from coastally upwelled water to regions further offshore.	RHB, R/V Wecoma, R/V Olaya, C-130	Weller/Straneo Grados Paulson/Letelier/Deve r/Pizarro Miller Garreaud Strub/Chelton		
2B	Upwelling, by changing the physical and chemical properties of the upper ocean, has a systematic and noticeable effect on aerosol precursor gases and the aerosol size distribution in the MBL.	C-130 RHB	Huebert/Matrai Blomquist/Huebert Covert/Bates/Quinn Strutton/Hales		
2C	The diurnal subsidence wave originating in northern Chile/southern Peru has an impact upon the diurnal cycle of clouds and provides a useful framework for analysis of numerical model performance on diurnal time scales.	RHB C-130 Twin Otter Land site Quikscat	Garreaud/Rutllant Bretherton/Wood Takahashi/Silva		
2D	The entrainment of cool fresh intermediate water from below the surface layer during mixing associated with energetic NIOs generated by transients in the trade winds is an important process to maintain surface heat and salt balance.	RHB R/V New Horizon	Gregg Weller/Straneo Ward		

VOCALS Timeline

ADDITIONAL SLIDES

AEROSOL-CLOUD-PRECIPITATION HYPOTHESES

#	Hypothesis	Obs	Models	Model Teams
1A	Variability in the physicochemical properties of aerosols has a measurable impact upon the formation of drizzle in stratocumulus clouds over the SEP.	C-130, RHB, Twin Otter, G-1,	LES WRF Chem GCMs	Wood/Bretherton Feingold Cotton/Carrio PNNL
1B	Precipitation is a necessary condition for the formation and maintenance of pockets of open cells (POCs) within stratocumulus clouds.	C-130, RHB	LES COAMPS	Feingold Wood/Bretherton NRL, Wang
1C	The small effective radii measured from space over the SEP are primarily controlled by anthropogenic, rather than natural, aerosol production, and entrainment of polluted air from the lower free-troposphere is an important source of cloud condensation nuclei.	C-130, RHB, G-1, Twin Otter, A-Train, Land site	WRF Chem CTMs Parcel Model GCMs	Gallardo/Cordova Donner/Golaz Wood/Zaveri PNNL
1D	Depletion of aerosols by coalescence scavenging is necessary for the maintenance of POCs.	C-130, A-Train	Parcel model LES GCMs	Feingold PNNL Donner/Golaz

COUPLED OCEAN-ATMOSPHERE LAND

#	Hypothesis HYPOTH	ESES	Model	Model Teams
2 A	Oceanic mesoscale circulations play a major role in the transport of heat and fresh water from coastally upwelled water to regions further offshore.	RHB, New Horizon, Olaya, JASON	ROMS CGCMs	Miller McWilliams/Hall/ Gruber/Large Garreaud? Strub/Chelton
2 B	Upwelling , by changing the physical and chemical properties of the upper ocean, has a systematic and noticeable effect on aerosol precursor gases and the aerosol size distribution.	C-130 RHB	WRF- Chem GCMs	PNNL
2 C	The diurnal subsidence wave ("upsidence wave") originating in northern Chile/southern Peru has an impact upon the diurnal cycle of clouds that is well-represented in numerical models.	RHB C-130 Twin Otter Land site	MM5/WRF GCMs	Garreaud/Rutllant Bretherton/Wood NRL
2 D	The entrainment of cool fresh intermediate water from below the surface layer during mixing associated with energetic near-inertial oscillations generated by transients in the magnitude of the trade winds is an important process to maintain heat and salt balance of the ocean surface layer.	RHB R/V New Horizon	Parcel Model LES	Gregg Weller/Straneo Ward

REx - GCM EVALUATION HYPOTHESES

#	Hypothesis	thesis Obs	
3 A	Poor representation of the vertical structure and depth of the stratocumulus-topped MBL contributes significantly to systematic GCM model errors in cloud cover, precipitation, and aerosol indirect effects over the SEP.	C-130 Cross Sections RHB vertical structure Chilean land site IMET buoy long term data	McWilliams/Hall/Gruber /Large Mechoso/Pan Kohler Garreaud Wang/Xie/deSzoeke Bretherton Donner/Golaz S. Wang
3 B	Errors in near-coastal winds contribute to errors in upwelling intensity in coupled ocean-atmosphere GCMs	Second Ship coastal data IMET/SHOA buoy Quikscat	Mechoso/Pan McWilliams/Hall/Gruber /Large McWilliams Wang/Xie/deSzoeke

Aerosol indirect effects in climate

Strength of second indirect effect (drizzle suppression) is strongly dependent upon the depth of the cloud base

VOCALS Coastal Program

Nature, 326, 655-661, 1987.

CCN = f(Biology)Biology = f(CCN)

Cloud properties in remote regions are controlled in part by marine algae.

SOLAS scientists seek to quantify that linkage, so that models of changed climates will be realistic.

The controls on gas exchange rates are poorly understood.

VOCALS Extended Observations

IMET Buoy (WHOI):

Instrumented mooring (WHOI) – 6 years continuous dataset (meteorology/oceanography/radiation) at 20°S, 85°W

EPIC/PACS Fall Cruises (NOAA ESRL):

Ship measurements: 2001 (EPIC), then annually 2003-2006, remote sensing, meteorology, oceanography, aerosols

San Felix (Universidad de Chile):

Meteorological station on remote oceanic location under Sc deck

Satellite Measurements:

GOES/MODIS/JASIN/AMSR/Quikscat, now Cloudsat and Calipso

VOCALS Timeline

Field and modeling — synthesis/analysis

AEROSOL-CLOUD-PRECIPITATION HYPOTHESES

#	Hypothesis	Obs	Models	Model Teams
1A	Variability in the physicochemical properties of aerosols has a measurable impact upon the formation of drizzle in stratocumulus clouds over the SEP.	C-130, RHB, Twin Otter, G-1,	LES WRF Chem	Wood/Bretherton Feingold Cotton/Carrio PNNL
1B	Precipitation is a necessary condition for the formation and maintenance of pockets of open cells (POCs) within stratocumulus clouds.	C-130, RHB	LES COAMPS	Feingold Wood/Bretherton NRL, Wang
1C	The small effective radii measured from space over the SEP are primarily controlled by anthropogenic, rather than natural, aerosol production, and entrainment of polluted air from the lower free-troposphere is an important source of cloud condensation nuclei.	C-130, RHB, G-1, Twin Otter, A-Train, Land site	WRF Chem CTMs Parcel Model	Gallardo/Cordova Wood/Zaveri PNNL
1D	Depletion of aerosols by coalescence scavenging is necessary for the maintenance of POCs.	C-130, A-Train	Parcel model LES	Feingold PNNL

COUPLED OCEAN-ATMOSPHERE LAND

#	Hypothesis HYPOTH	ESES	Model	Model Teams
2 A	Oceanic mesoscale circulations play a major role in the transport of heat and fresh water from coastally upwelled water to regions further offshore.	RHB, New Horizon, Olaya, JASON	ROMS	Miller McWilliams/Hall/ Gruber/Large Garreaud? Strub/Chelton
2 B	Upwelling , by changing the physical and chemical properties of the upper ocean, has a systematic and noticeable effect on aerosol precursor gases and the aerosol size distribution.	C-130 RHB	WRF- Chem	PNNL
2 C	The diurnal subsidence wave ("upsidence wave") originating in northern Chile/southern Peru has an impact upon the diurnal cycle of clouds that is well-represented in numerical models.	RHB C-130 Twin Otter Land site	MM5/WRF	Garreaud/Rutllant Bretherton/Wood
2 D	The entrainment of cool fresh intermediate water from below the surface layer during mixing associated with energetic near-inertial oscillations generated by transients in the magnitude of the trade winds is an important process to maintain heat and salt balance of the ocean surface layer.	RHB R/V New Horizon	Parcel Model LES	Gregg Weller/Straneo Ward

OUTLINE

- Background on REx
- The REx hypotheses
 - Aerosol-Cloud-Precipitation Hypotheses
 - Coupled Ocean-Atmosphere-Land
 Hypotheses
- REx and Modeling

VOCALS Goal

To develop and promote scientific activities leading to improved understanding of the Southeast Pacific (SEP) coupled oceanatmosphere-land system on diurnal to interannual timescales.

- Cold SSTs, coastal upwelling
- Cloud-topped ABLs
- Influenced by and influential on remote climates (ENSO)
- Unresolved issues in heat and nutrient budgets
- Important links between clouds and aerosol

1BPrecipitation is a necessary condition for the
formation and maintenance of pockets of open cells
(POCs) within stratocumulus clouds

Conceptual model of POC formation

Strong diurnal cycle over SEP TMI data, Wood et al. (2002)

-0.8 -0.2 +0.2 +0.8 cm/s

"UPSIDENCE WAVE"

MM5, Garreaud and Muñoz (2004)