Aerosol-Cloud-Precipitation: Airborne plans and discussion

Robert Wood, University of Washington many contributors

Outline

- Aircraft and payloads
- Flight Plans
- Multi-platform synergies

Aircraft and payloads

The aircraft

NSF C-130

CIRPAS Twin Otter

DoE ASP G-1

UK FAAM BAe-146

NSF C-130 Payload

- **Standard instruments**: Microphysics, Turbulence, Thermodynamics suite
- Remote sensing: Wyoming Cloud Radar (zenith+nadir+slant), Cloud Lidar (zenith), Microwave radiometer (183 GHz, zenith), MODIS Airborne Simulator (MASTER, nadir), BBRs
- Chemistry/aerosols/clouds: LDMA, RDMA, ToF Mass Spec, nephelometer, PSAP, CN counters (+ultrafine), CCN, CVI, Cloud water collector, gas phase chemistry, Impactors, PDPA, 2D-S, fast FSSP
- Dropsondes

What will the C-130 measure?

C-130 Measurables

- Boundary layer structure:
 - -vertical profiles (dropsondes), T, q, u, v
 - *in-situ* mean state and turbulence \Rightarrow entrainment
 - cloud mesoscale circulations (WCR)
 - mesoscale horizontal variability (differential GPS)
 - inversion base height (WCR)

C-130 Measurables

- <u>Cloud and precipitation</u> (remotely sensed):
 - high resolution vertical and horizontal cloud and precipitation structure (WCR)
 - cloud base height, from below (WCL)
 - LWP, from below (183 GHz radiometer)
 - cloud optical properties (BBRs, MASTER from above)

Drizzle, LWC, w, and pressure perturbations in stratocumulus

MODIS/Aster Airborne Simulator (MASTER)

- •50 spectral channels from VIS to IR, 50 m spatial resolution (from 20 km altitude), 16 bit data system
- •MASTER: VIS to 12 μm , variable scan speed for different a/c altitudes, flown on B200 King Air, ER-2, WB-57, DC-8
- •NASA Facility instrument supported by the Ames Airborne Sensor Facility (J. Myers)
 - -Engineering and maintenance
 - -Field support and data processing (L1B)
 - -Calibration/Characterization Lab: radiometric cal (light sources, integrating spheres, diffusers, NIST traceability), spectral cal from UV to IR, environmental test chamber
- •Level-2 products provided by PI investigators only

SAFARI-2000, 14 Sept 2000, ER-2 Flight Track 10 northern part of track off Angola

C-130 Measurables

- <u>Cloud and precipitation</u> (in-situ):
 - importance of redundancy in measurements
 - cloud/precipitation size distribution (1-400 μ m)
 - cloud liquid water content (Gerber PVM)
 - new state-of-the-art probes
 - drizzle sampling (2D-S, SPEC Inc.)
 - cloud/drizzle boundary (PDPA, UCSC)
 - fast FSSP (Meteo France)

UC Santa Cruz @ VOCALS?

20

15

10

5

0 -0

10

20

30

40

Droplet Size, Dp (um)

50

Number of Drops

- PI: Patrick Chuang
- Phase-Doppler Interferometer (PDI) has been developed for airborne measurements.
- Measures single cloud drop:
 - size
 - velocity
 - inter-drop spacing
- Size range: 3 to 150 um

MASE RF # 7 7-10-05 18:32:40-18:34:00 UTC

60

70

80

Understanding the **development of drizzle** in stratocumulus requires measurement of drop size distribution in the **30 to 100** μ m diameter range. **PDI performs very well in this size range**, whereas other instruments often have difficulties.

2D-S Probe (SPEC Inc.)

- Faster response time than 2D-C
- Small particles can be imaged (5-10 microns)
- Improved sample volume characterization for small drops

Fast-FSSP

- No dead time
- Higher resolution spectra than standard FSSP
- Auto-calibrating using Mie scattering

C-130 Measurables

- <u>Aerosols</u>:
 - aerosol size distribution (10 nm-10 μ m)
 - LDMA/RDMA, PCASP, giant nucleus impactor
 - size-resolved aerosol speciation
 - impactors, streakers, aerosol mass spectrometer
 - cloud condensation nucleus spectrum
 - ultrafine aerosol (CPCs)
 - cloud droplet residual aerosol chemistry (CVI)
 - bulk chemistry of cloud LWC
 - aerosol radiative properties (scattering/absorption)

Don Collins, Texas A&M

C-130 Measurables

- Gas phase chemistry:
 - SO₂ and DMS concentrations at high frequency CO, fast O_3

CIRPAS Twin Otter Payload

- Standard instruments: Microphysics (PDPA, FSSP, CIP), Turbulence, Thermodynamics suite
- **Remote sensing**: 94 GHz FMCW radar, chaff dispenser
- Chemistry/aerosols/clouds: PCASP, 2 CPCs, DMA/TDMA, CCN, SP2 (black carbon)
- Towed platform (optional)

DoE ASP G-1 Payload

- **Standard instruments**: Microphysics, Turbulence, Thermodynamics suite
- Chemistry/aerosols/clouds: Aerosol size distribution/conc (PCASP, FIMS, CPC), composition (PILS, ToF aerosol mass spectrometer), CCN, nephelometer, aethelometer, O₃, CO, SO₂, DMS/organics

FAAM BAe-146 payload

- **Standard instruments**: Microphysics, Turbulence, Thermodynamics suite
- **Remote sensing**: Microwave Radiometer (MARSS), Shortwave Spectrometer (SWS), Spectral Hemispheric Irradiance Measurement (SHIM), BBRs, Heiman, Airborne Research Interferometer Evaluation System (ARIES)
- Chemistry/aerosols/clouds: CCN, CPC, Aerosol mass spectrometer, SP2 (black carbon), filters, CVI, nephelometer (dry/wet), PSAP

When will the C-130 deploy?

Nominally Oct 15- Nov 15

Mainly during Phase 2 of ship sampling (Oct 22-Nov 11)

More on aircraft payloads and plans in Breakout C, Tuesday 08:30-10:30

Flight Plans

Cross section flights

C-130 Cross-Section Sampling

20°S, 70-85°W

 GOAL: Repeatable characterization of lower tropospheric structure, clouds, aerosols/chemistry, surface fluxes along 20°S

- Probably 5 flights with this plan
- Same time of day? Depart at 03 hr local, return 12 hr.

C-130 Cross-Section Sampling

20°S, 70-85°W

below cloud: LWP, subcloud aerosol/chemistry, MBL turbulence, WCR, cloud base
in cloud: microphysics/turbulence/chemistry, WCR
above cloud: WCR, MASTER, FT aerosols

Cross-section flights

aerosol-cloud-precipitation hypothesis testing

- H1a influence of aerosols upon precipitation
 - systematic evaluation of aerosol gradients and precipitation
- H1b precipitation and POCs
 - do we see regions of open cells without drizzle?
- H1c small $r_{\rm e}$ anthropogenic or natural?
 - in-situ and remotely sensed cloud microphysics and subcloud aerosol speciation and attribution

FAAM 146 Cross section

 Complement C130 measurements with focus on radiation (midlevel) and aerosol-cloud (low-level)

POC-drift flights

POC-Drift missions (C-130 + others)

below cloud: LWP, subcloud aerosol/chemistry, MBL turbulence, WCR, cloud base
in cloud: microphysics/turbulence/chemistry, WCR above cloud: WCR, MASTER, FT aerosols

POC-Drift missions (probably 4/5 flights)

- 100 km long runs (16 minutes) crossing boundary between open and closed cells, drift with the mean wind
- Three stacks: legs below cloud, cloud base, in cloud, cloud top, above cloud (100 mins including profile)
- Profiles after each stack at least 1 or 2 in clear sky if possible
- Synergy with ship
- Multi-flight, multi-aircraft sampling (Lagrangian), possible RHB synergy
- Some during day, some night

Prolific production of drizzle cells at boundary between closed and open cellular structure

Comstock et al. (2007)

Strawman: multi-flight Lagrangian

- Daily pattern modeled on POCs-drift mission
- Track airmass using satellites (POCs) and model trajectories
- e.g. Night: C-130 ⇒ Day: G-1
 or 146 ⇒ Night C-130
- Can track POCs or evolution of polluted MBL

ASTEX Lagrangian 2, Azores, 1992 (Businger et al. 20

POC-drift/lagrangian flights aerosol-cloud-precipitation hypothesis testing

- H1a influence of aerosols upon precipitation
 - quantification of aerosol and precipitation characteristics across POC boundary
- H1b precipitation and POCs
 - detailed mesoscale structure and dynamics of precipitating stratocumulus
- H1c small r_e anthropogenic or natural?
 - in-situ and remotely sensed cloud microphysics and subcloud aerosol speciation and attribution
 - lagrangian evolution of entrained air
- H1d coal. scavenging needed to maintain POCs
 - evolution/budgets of aerosol distribution in and near POCs

Hypothetical C-130 flight calendar

[12]

- Oct 15-18, 3 test flights (daytime)
- Oct 19-25, day flights, 1 POC drift, 1 polluted lagrangian (2 flights)
 [27]
- Oct 26-31, night flights, 3 X-section flights
 [27]
- Nov 1-Nov 7, day flights, 2 POC drift [18]
- Nov 7-Nov 15, night flights,

2 cross section flights of PAC http://www.accord.org/120 [36]

Coastal Airborne Sampling

- Exploration of gradients in cloud microphysical properties
- MORE in BREAKOUT GROUP C from
 - Bruce Albrecht (Twin Otter)
 - Pete Daum (G-1)
 - Steve Abel (FAAM 146)

Synergy between platforms

- Cross section
- Lagrangians
- Aircraft-aircraft intercomparisons
- C-130 cross section near coastal sampling

RHB/C-130 Co-sampling During POC-drift and Cross-section missions

Additional slides

Aircraft sampling along POC boundaries

- Aircraft sampling is needed within transition region between closed and open cellular regions
- EPIC Sc data showed that transition region has
 - Prolific drizzle cell development (number of small drizzle cells increases by a factor of 5)
 - Highest rain rates preferentially occur within transition region
- Need detailed joint microphysics, aerosol and kinematic measurements within transition region to untangle feedbacks

Comparisons of PDI and Gerber derived LWC.

(A) No roll-off correction applied to Gerber data.

(B) Normal roll-off correction.

(C) Roll-off shifted by7 um (towards smaller sizes)

(D) PDF of 1 Hz LWC data during MASE.

Rain rates and transitions

Transition: Closed to open-cellular

Comstock et al. (2007)

Prolific production of drizzle cells at boundary between closed and open cellular structure

Comstock et al. (2007)

Additional slides

VOCALS—CIRPAS Twin Otter

Instrument	Observations/Purpose
Standard met	Winds, temp, dewpoint, cloud
	liquid water, sfc temp,
	turbulence
Towed-Platform	Turbulence near surface
(Optional)	
94 GHz Doppler FMCW	Cloud properties; in -cloud
radar	turbulence
Chaff Dispenser (with	Track air movements —
radar)	entrainment, sub -cloud cloud
	layer coupling, large eddies
CPCs	Ultrafine aerosols
PCASP	Aerosols 0.1 -3 _m
FSSP	Clouds 2 -40 _m
CIP	Drizzle 25 -1500 _m
DMA/TDMA (?)	Aerosols, hygroscopicity
N-Mass	5 channel CN, fast response
CCN-200	CCN (fast -2-point; slow -6
	points)
Phased Doppler	Cloud -drizzle 2 -600 _m
Interferometer	
SP2-Black Carbon	BC mass and ratio to total
	particles