VOCALS Cloud-Drizzle-Aerosol Hypotheses

- Understanding and modeling aerosol indirect effects
- Importance of drizzle to Sc climatology and climate feedbacks

Radiative Forcing Components

AEROSOL-CLOUD-PRECIPITATION HYPOTHESES				
#	Hypothesis	Obs	Models	Model Teams
1A	Variability in the physicochemical properties of aerosols has a measurable impact upon the formation of drizzle in stratocumulus clouds over the SEP.	C-130, RHB, Twin Otter, G-1,	LES WRF Chem GCMs	Wood/Bretherton Feingold Cotton/Carrio PNNL
1B	Precipitation is a necessary condition for the formation and maintenance of pockets of open cells (POCs) within stratocumulus clouds.	C-130, RHB	LES COAMPS	Feingold Wood/Bretherton NRL, Wang
1C	The small effective radii measured from space over the SEP are primarily controlled by anthropogenic, rather than natural, aerosol production, and entrainment of polluted air from the lower free-troposphere is an important source of cloud condensation nuclei.	C-130, RHB, G-1, Twin Otter, A-Train, Land site	WRF Chem CTMs Parcel Model GCMs	Gallardo/Cordova Donner/Golaz Wood/Zaveri PNNL
1D	Depletion of aerosols by coalescence scavenging is necessary for the maintenance of POCs.	C-130, A-Train	Parcel model LES GCMs	Feingold PNNL Donner/Golaz

Modeling challenges

- Does drizzle matter to current SEP cloud climatology?
- Does the second aerosol indirect (Albrecht) effect reinforce or cancel the Twomey effect in the SEP?
- 1A Can we reliably simulate sensitivity of Sc and drizzle to aerosol variations with LES? With meso./global models?
- 1B Do we have feasible modeling frameworks for simulating a POC lifecycle? Do they require simulating mesoscale coupling of the POC and its surroundings? How important is the diurnal cycle?
- 1C Can we simulate the day-to-day variability of aerosol concentration/composition above and in the SEP MBL? How about droplet effective radius in/out of broken cloud regimes? How about cloud fraction/LWP?
- 1D Can we simulate observed aerosol depletion inside a POC? Does this constrain local vs. remote aerosol sources?

Regional model sensitivity of SWCF to N_d in NEP Sc

McCaa and Bretherton 2004

IROAM Suppressed drizzle experiment (no Drizzle) -deSzoeke

EJ. R

7∕Ó₩

70W

12

É.

15

20

0.7

0.3

A.4

D.ft

Ø. F

QL.7

D.R

<u>15°S zonal-vertical section</u>: cloud and potential temperature

control

no Drizzle