International CLIVAR Modeling

Ben Kirtman
George Mason University
Center for Ocean-Land-Atmosphere Studies
International CLIVAR Modeling

- WGSIP Centric View of CLIVAR Modeling
 - Initial Phase:
 - Emphasized Seasonal Time Scales
 - Potential Predictability – Perfect BCs
 - Assessment of Coupled Model Simulations
 - Current Phase:
 - Time Scales to include Sub-seasonal and Decadal
 - Real Prediction and Realizable Predictability
 - Emphasis on Probabilistic Prediction and Multi-Model Ensembles
- GLACE: CLIVAR-GEWEX Collaborative Project
- Impact of Amazon Deforestation on Coupled Variability
- Regional Modeling
- Climate Observation and Prediction Experiment (COPE)
 - Task Force for Seasonal Prediction (TFSP)-WGSIP Collaboration/Workshop
 - Evaluation of Current Seasonal Prediction Capability and Skill in the Americas
Annual mean 2N–2S SST – without flux correction

No Flux Correction

Annual mean 2N–2S SST – flux corrected

Flux Corrected

STOIC Project
NINO3 Skill Score Comparison
(Systematic Error Removed)

Multi-Model Ensemble

- SIO-180 Cases
- U0X-312 Cases
- LDEO1-288 Cases
- NCEP-192 Cases
- COLA-180 Cases
- LIM-323 Cases
Effect of Increasing Ensemble Size

Precipitation, RPSS over Tropics
Forecast start month and years: May / 1987-1999
Average over 2-4 months FC (JJA)

Multi-Model
Single-Model

From DEMETER (ECMWF)
Global Land-Atmosphere Coupling Experiment

An intercomparison of land-atmosphere coupling strength across a range of atmospheric general circulation models

GEWEX – CLIVAR Collaboration
Amazon Deforestation on Enhances Coupled Variability: Impacts on Predictability?
High Resolution Regional Modeling of South American Interannual Variability

Low Level Jet Variability - Impact on Precipitation Variability?
SMIP (Seasonal prediction Model Intercomparison Project)

- **Organized by**: World Climate Research Programme
 Climate Variability and Predictability Programme (CLIVAR)
 Working Group on Seasonal to Interannual Prediction (WGSIP)
- **Coordinators**: G. Boer (CCCma), M. Davey (UKMO), I.-S. Kang (SNU), and K. R. Sperber (PCMDI)

Purpose

Investigate 1 or 2 season potential predictability based on the initial condition and observed boundary condition

SMIP Experimental Design

- Model Integration: 7 month x 4 season x 22 year (1979-2000), 6 or more ensembles
- 4 institute 5 models have been participated.

: NCEP (USA), CCCma (Canada), SNU/KMA (Korea), MRI/JMA (Japan)

Models used

<table>
<thead>
<tr>
<th>Institute</th>
<th>Resolution</th>
<th>Experiment Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCEP</td>
<td>NCEP</td>
<td>T62L28</td>
</tr>
<tr>
<td>GDAPS</td>
<td>KMA</td>
<td>T106L21</td>
</tr>
<tr>
<td>GCPS</td>
<td>SNU/KMA</td>
<td>T63L21</td>
</tr>
<tr>
<td>NSIPP</td>
<td>NASA</td>
<td>2°x2.5° L43</td>
</tr>
<tr>
<td>JMA</td>
<td>JAPAN</td>
<td>T63L40</td>
</tr>
</tbody>
</table>
Climate System Observations and Prediction Experiment (COPE)

Task Force for Seasonal Prediction (TFSP)

Hawaii Workshop November 2003
Scientific Direction and Structure of WCRP

- Determine to What Extent Climate can be Predicted
- Determine the Extent of Man’s Influence on Climate

- WCRP Activities will Lead to the Prediction of the Total Physical Climate System Including an Assessment of What is and What is not Predictable
• Four Major Programs
 – CLIVAR: Climate Variability
 – GEWEX: Water Cycle and Energy
 – CliC: Cyrosphere in Climate
 – SPARC: Stratosphere in Climate

• Two Major Modeling Activities
 – WGNE: Working Group on Numerical Experimentation
 – WGCM: Working Group on Coupled Modeling
Climate System Observations and Prediction Experiment (COPE)

• Seamless Prediction of the Total Physical Climate System from Weeks Through Decades
• Synthesizes Ongoing Observational and Modeling Activities of the all Relevant WCRP Components

• Three Central Themes:
 – Describe Structure and Variability of the Total Climate System Through Modeling and Observational Studies
 – Assess the Predictability of the Total Climate System by Making Predictions
 – Understand Mechanisms and Uncertainty of Regional Climate Change Prediction
Task Force for Seasonal Prediction: Hypothesis

• There is currently untapped seasonal predictability due to interactions (and memory) among all the elements of the climate system (Atmosphere-Ocean-Land-Ice)

• Seasonal Predictability Needs to be Assessed with Respect to a Changing Climate
 – Use IPCC Class Models
 – Climate Change is More than just Global Warming
 • Example: Land Use Change
Interactive Atmosphere-Ocean-Land-Ice Prediction Experiment

• Best Possible Observationally Based Initialization of all the Components of Climate System
• Six Month Lead Ensemble (10 member) Fully Interactive Predictions of the Climate System
 – Predictions Initialized Each Month of Each Year 1979-Present
• Interactive Model:
 – Ocean – Open but interactive (e.g., slab mixed layer or GCM)
 – Atmosphere – Open but interactive, most likely a GCM
 – Land – Open but interactive, e.g. SSiB, Mosaic, BATS, CLM, Bucket …
 – Ice – Open but interactive (e.g., thermodynamic or dynamic)
Interactive Atmosphere-Ocean-Land-Ice Prediction Experiment

- **ENSO Mechanism Diagnostic (Example)**
 - Recharge Oscillator vs. Delayed Oscillator
 - Role of Westerly Wind Bursts/Stochastic Forcing

- **Impact of AO on Seasonal Predictability**

- **Regional Predictability**
 - Monsoons
 - Diurnal Cycle/Low Level Jets
 - South American Climate

- **Coupled Feedbacks**
 - Intraseasonal Variability
 - Warm Ocean Processes (i.e., Indian and West Pacific)
 - Remote Impact of Deforestation on Predictability
COPE-TFSP Implementation

- Evaluation of Current Seasonal Prediction Capability and Skill
 - WGSIP and Regional Panel Driven Science
 - What Fields to Verify?
 - What Data Sets to Use?
 - For Example: Collaborative Effort Between VAMOS and WGSIP to Evaluate Current Seasonal Forecast Skill over the Americas

- TFSP Experiments: VAMOS-WGSIP Collaboration
 - How to Initialize and Verify
 - Science Questions/Problems
 - How to Solidify Collaboration