Numerical simulations of mountain waves and rotors observed during T-REX

Simon Vosper¹, Peter Sheridan¹, Stephen Mobbs² and Ralph Burton²

¹Met Office, Exeter, UK ²School of Earth and Environment, University of Leeds, Leeds, UK

Introduction

The Terrain Induced Rotor Experiment (T-REX) took place during spring 2006, over the Sierra Nevada mountains and Owens Valley. Results are presented from high-resolution numerical simulations of mountain waves and associated rotor motions observed during T-REX. The results are compared with airborne and ground based observations.

The simulations

The model used for this study is the Met Office Unified Model.

 Nested forecast simulations were performed with horizontal resolutions of 40 km. 12 km. 4 km. 1 km and 333 m. The vertical grid spacing used was 5 m at the surface, increasing to 200 m at 2 km.

Simulations of flows observed during IOP-6 and 8 are presented. Results are shown for the finest (Δx =333 m) resolution.

on 26 March.

24-26 March 2006
Run 1.1, 28 kft
5 Northern leg

118.2

Pop 1 2 29 14 Southern leg -118.8 -118.6 Northern leg -118.8 -118.6 118.2 -117.6 200 Milling

Fig 5: The model vertical velocity and that measured by the BAE-146 during flight B181, 26 March 2006.

Fig 7: Vertical velocity (ms⁻¹) and θ on cross section through Fig 6: Forecast vertical Independence.

Results for IOP-8 31 March – 1 April 2006

IOP-6 summary

velocity (ms-1) at 5 km

valid at 0200Z 1 April.

 Large amplitude lee wave present in simulations (vertical velocities >12 ms⁻¹) Unsteady rotor motion present within Owens Valley. Wave breaking occurs above 14 km. Downslope winds penetrate into west side of valley. Return flow constrained to east side of valley.

•Near-surface winds exhibit jet structure near western foot of Sierras. Flow is highly unsteady and contains small-scale eddy motions. A fan-like jet is present to north of Bishop.

Comparisons with data from BAE-146 flight B181 show the model captures the amplitude, but not the phase of the mountain-wave motion. Comparison with University of Leeds AWS data shows model slightly underestimates unsteadiness in near-surface flow across the valley floor.

IOP-8 summarv

•Weak amplitude lee wave present in simulations (maximum w~7 ms⁻¹) No downslope wind or rotor motion present. The near-surface winds are relatively steady and generally southerly near Independence. Reasonable agreement between forecast wave motion and that observed during the BAE-146 flight B184.

Comparison with Leeds AWS data shows model gives a good representation of the hourly mean wind speed and variability across the valley floor.

Fig 8: 10 m wind vectors and speed (ms⁻¹) across the Owens Valley near Independence at 0200Z on 1 April.

Run 4.2, 19.1 kf Northern lea 118.8

Fig 9: The model vertical velocity and that measured by the BAE-146 during flight B184, 31 March 2006.

Fig 10: Hourly mean wind speed and standard deviation across the Owens Valley floor computed from Leeds AWS sites and model predictions at the same sites. Results are shown for IOP-6 and IOP-8

Met Office FitzRoy Road Exeter Devon EX1 3PB United Kingdom Tel: 01392 884584 Fax: 01392 885681 Email: simon.vosper@metoffice.gov.uk

