UK FAAM BAE-146 research flights during T-REX

Simon Vosper1, Peter Sheridan1, Phil Brown1, Dave Kindred1, Stephen Mobbs2, Ralph Burton2, Jim McQuaid2, Barbara Brooks2, Alan Woolley3 and Ruth Purvis3

1Met Office, Exeter, UK 2School of Earth and Environment, University of Leeds, Leeds, UK 3FAAM, Cranfield University, Cranfield, Bedford, UK

Introduction

• The Terrain Induced Rotor Experiment (T-REX)
special observing period took place during spring 2006.
• The UK FAAM BAE-146 research aircraft participated in T-REX for a 4 week period (13 March to 11 April 2006).
• The aircraft was based in Fresno, to the west of the Sierra Nevada and Owens Valley.
• A wide range of scientific flights were conducted. Amongst these were:
 – rotor/mountain-wave flights (IOPs 6, 8, 9, 10)
 – cold pool flights (EOPs 1 & 2)
 – dust and chemistry flights
• Preliminary results from such flights are presented here.

Mountain-wave measurements

• A large amplitude trapped lee wave was observed during IOP-6 on 25-26 March 2006.
• The wave event was accompanied by strong downslope winds and rotor motion within the Owens Valley.
• Measured vertical velocities exceeded 6 m s-1
• The flow at 19 kft was turbulent above the Sierra Nevada range
• Comparison between northern and southern legs of the racetrack reveal significant north-south changes in the wave field

Chemical measurements

• Chemical measurements during IOP-6 show wavy signature which is approx. 90° out of phase with the vertical velocity.
• The O\textsubscript{3} and CO measurements are 180° out of phase, presumably due to vertical gradients of opposing sign.

Flight tracks

• Rotor IOP flights consisted of upwind profiles (nr. Fresno) and series of stacked “racetrack” legs between 19 kft and 28 kft ASL.
• Cold pool EOP flights consisted of upwind profiles, series of stacked straight and level legs up and down the Owens Valley between 6 and 22 kft ASL and profiles within the valley.
• Dropsondes were released within the valley during IOP and EOP flights.

Cold pool measurements

• Cold pool event occurred during 30 March, EOP-2.
• Strong inversion at 3.2 km observed in aircraft profiles within the Owens Valley.
• Flow beneath inversion is decoupled from that aloft.
• Increased turbulence across inversion layer.
• Inversion significantly weaker over Central Valley.

Instrumentation

The aircraft was equipped with:
• Turbulence probe, Rosemount temperature sensors, dropsonde system.
• Chemistry instrumentation (including O\textsubscript{3}, NO\textsubscript{x}, CO, sample bottles).
• ARIES (infrared interferometer), MARSS/DEIMOS (microwave radiometers).
• Cloud droplet and precipitation particle probes, INC (ice nucleus counter), CCN (cloud condensation nuclei).

Summary

• A range of scientific flights were conducted by the FAAM aircraft during T-REX.
• The measurements, in conjunction with other observations from the comprehensive T-REX dataset, will help shed new light on mountain-wave and rotor chemistry over complex terrain.
• The data are being used for high resolution model (Met Office Unified Model) development.