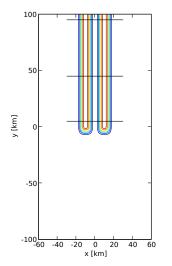


Juerg Schmidli presented by Peter Sheridan

T-REX Workshop, Yale University, March 2008


Objectives of Intercomparison Study

Analyze sensitivity of model-simulated valley winds to

- Dynamical core and computational mixing
- Parameterization of turbulence (1d PBL scheme)
- Parameterization of surface-atmosphere interactions and radiation transfer

Experimental Setup

- Atmosphere at rest with surface inversion $(\Delta\theta = 5 \text{ K})$
- ▶ Integration: 36° N; 21 March; 6–18 LT
- 1d PBL parameterization; horizontal mixing
- ▶ Domain: 120 × 400 × 12.2 km
- Grid: $\Delta x = \Delta y = 1 \text{ km}; \Delta z = 20...200 \text{ m}$
- uncoupled and fully coupled simulations
- 2d and 3d setup (and 1d)

Terrain (southern half of domain)

Experimental Setup

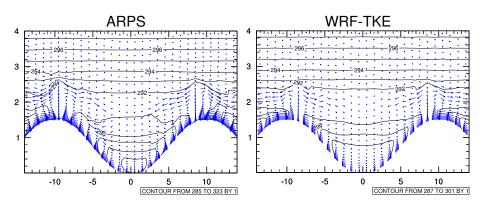
Uncoupled simulations

- free-slip lower boundary
- surface heating determined by specified surface sensible heat flux
- zero momemtum and latent heat flux

Coupled simulations

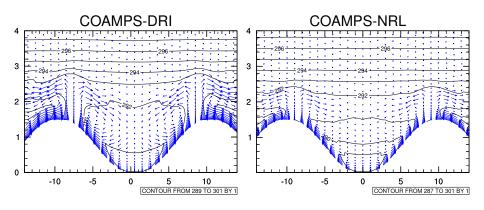
- no-slip lower boundary
- surface heating determined by physics (land surface; radiation transfer)
- land surface as in Owens Valley (semidesert; sr = 0.2, z₀ = 0.1 m)

Problem: Setup is difficult to implement in some models

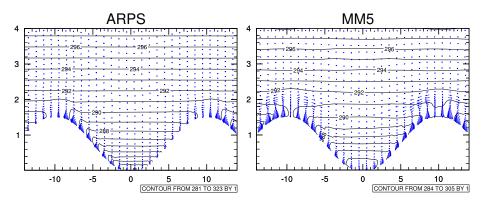

Participating Institutions

Institution	Model	1d	2d-unc	2d-cpl	3d-unc	3d-cpl
NCAR	ARPS					
University of Leeds	BLASIUS	-	$\sqrt{}$	$\sqrt{}$	-	-
NRL	COAMPS		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
DRI	COAMPS					
Univ of München	MM5	-	(3D)	(3D)		$\sqrt{}$
Univ of Virginia	RAMS	-	-			
UK MetOffice	UM		$\sqrt{}$	-		-
Univ of California	WRF			$\sqrt{}$		$\sqrt{}$
NCAR	EULAG	-	-	-	-	-
Michigan State Univ	RAMS	-	-	-	-	-

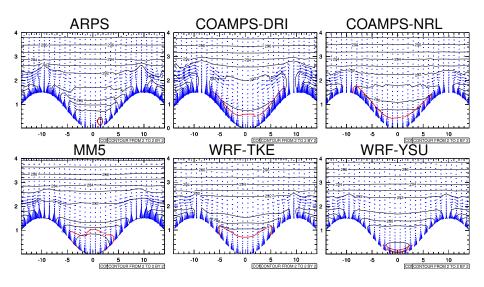
(http://wiki.eol.ucar.edu/trex-modeling/ValleyWinds/FirstRoundIntercomparison)


Re-open submission?

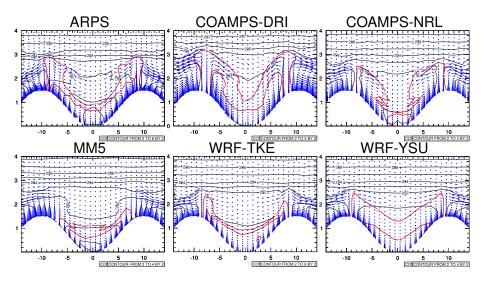
Selected Results: 2D coupled (12pm)


⇒ Different models, but similar results

Selected Results: 2D coupled (12pm)


⇒ Same model, but quite different results!

Selected Results: 2D coupled (9am)



- ⇒ ARPS and RAMS show non-symmetric evolution of slope winds
- ⇒ All other models exhibit a symmetric evolution

Selected Results: 3D coupled (y = 50 km**; 12pm)**

Selected Results: 3D coupled (y = 50 km**; 3pm)**

Discussion

Suggested Analysis

- ▶ In comparing the models, focus on the mean up-valley mass flux and vertical mass exchange (i.e. bulk diagnostics; influence of the valley flow on the larger scale)
- Along-valley variation of up-valley mass flux and vertical mass flux
- Evolution of cross-valley averaged potential temperature profile and plain-valley temperature differences
 - \Rightarrow Valley wind dynamics

Intercomparison Paper

- Based on results of above analysis
- Further ideas and suggestions?