# T-REX EOPs: Valley winds and sensitivity to synoptic conditions

Juerg Schmidli, Gregory Poulos

Earth Observing Laboratory
National Center for Atmospheric Research

T-REX Data Workshop

Acknowledgements W. Brown, and the T-REX teams

#### **Overview of T-REX EOPs**

| EOP | Date      | <i>u</i> (5.5 km) | Nighttime valley flow               |
|-----|-----------|-------------------|-------------------------------------|
| 1   | 22-23 Mar | 12 @ 250          | up-valley flow; shallow down-valley |
| 2   | 29-30 Mar | 20 @ 270          | three layer structure               |
| 3   | 18-19 Apr | 5@340             | most classical conditions           |
| 4   | 28-29 Apr | 9@315             | moderate down-valley jet            |
| 5   | 29-30 Apr | 10 @ 280          | strong down-valley jet              |

- Goal: Explain the observed evolution of the valley wind and its case-to-case variability
- ▶ Today: Compare EOP 2 and EOP 5

### **Topography of Owens Valley and Instrumentation**



- Sierra Nevadas (3500-4000 m)
- Inyo Mnts (2400-3000 m) and White Mnts (3500-4000 m)
- ► 150 km long, 15-30 km wide, 1.5-3 km deep
- ISFF flux towers
- ISS wind profilers (MISS)
- Radiosonde from Independence

## Synoptic situation GFS 500 hPa 12 UTC (4 am)



 $u(5.5 \text{ km}): 20 @ 270^{\circ}$ 



 $u(5.5 \text{ km}): 10 @ 280^{\circ}$ 

## Time-height plot of wind and $\theta$ at MISS site $_{\theta}$ contour is 2.5 K



#### Turbulent heat flux H at ISFF central



weak and intermittent  $(\overline{H} = -14 \text{ W/m}^2)$ 



strong and continuous  $(\overline{H} = -51 \text{ W/m}^2)$ 

## **Simulation Setup and Analysis**

- ► ARPS in LES mode (1.5 TKE)
- forced by 6 h NAM analyses; one-way nesting
- 4 nested grids (9km, 3km, 1km, 350m)
- integrated for 36 h starting at 12 UTC (4 am) (11 h spin-up)

#### Analysis undertaken so far

- compared with wind profiler, RASS, radiosonde, flux towers
- radiation and surface energy budgets
- calculated momentum and heat budgets; TAFs

## **Comparison with MISS: EOP 2**

Time-height plot of wind and potential temperature



## **Comparison with MISS: EOP 5**

Time-height plot of wind and potential temperature



## Momentum equation for the along-valley wind

Along-valley acceleration (e.g. Mahrt 1982)

$$\frac{Du}{Dt} = \underbrace{-\frac{1}{\rho_0} \frac{\partial p_{\text{ref}}}{\partial x} - \frac{g}{\theta_0} \frac{\partial (\overline{\theta}h)}{\partial x}}_{-\frac{1}{\rho_0} \frac{\partial p}{\partial x}} - F_x$$

where  $\overline{\theta}$  is the (vertically integrated) potential temperature deficit

$$\overline{\theta} = \frac{1}{h} \int_{z}^{z_{ref}} \theta' \, dz'$$

and  $h = z_{ref} - z$ 

## Along-valley forcing: Thermal wind term at 1400 m

 $z_{ref} = 2000 \text{ m}$ ; Difference between Lone Pine (south) and Bishop (north)





## Along-valley forcing: Low- and upper-level PG between Lone Pine (south) and Bishop (north)





## **EOP 5: Large-scale forcing** Wind at 2200 m MSL; 3 km domain



### **EOP 5: Heat budget components**

Time: 5z

#### South (near ISFF south)



#### North (near Big Pine)



- ► All five EOPs have been simulated successfully using ARPS; investigate physical mechanisms leading to observed evolution
- Owens Valley wind system is very susceptible to synoptic influences. Specific geometry (wide; open to north and east above 2200-2500 m)
- ► EOP 2: upper-level PG opposes low-level thermal forcing ⇒ three layer structure
- ► EOP 5: upper-level PG enhances low-level thermal forcing ⇒ strong downvalley wind

- ➤ All five EOPs have been simulated successfully using ARPS; investigate physical mechanisms leading to observed evolution
- Owens Valley wind system is very susceptible to synoptic influences. Specific geometry (wide; open to north and east above 2200-2500 m)
- ► EOP 2: upper-level PG opposes low-level thermal forcing ⇒ three layer structure
- ► EOP 5: upper-level PG enhances low-level thermal forcing ⇒ strong downvalley wind

- All five EOPs have been simulated successfully using ARPS; investigate physical mechanisms leading to observed evolution
- Owens Valley wind system is very susceptible to synoptic influences. Specific geometry (wide; open to north and east above 2200-2500 m)
- ► EOP 2: upper-level PG opposes low-level thermal forcing ⇒ three layer structure
- ► EOP 5: upper-level PG enhances low-level thermal forcing ⇒ strong downvalley wind

- All five EOPs have been simulated successfully using ARPS; investigate physical mechanisms leading to observed evolution
- Owens Valley wind system is very susceptible to synoptic influences. Specific geometry (wide; open to north and east above 2200-2500 m)
- ► EOP 2: upper-level PG opposes low-level thermal forcing ⇒ three layer structure
- ► EOP 5: upper-level PG enhances low-level thermal forcing ⇒ strong downvalley wind