

HSRL data processing from TORERO

Ed Eloranta

Attenuated backscatter ($\text{m}^{-1} \text{str}^{-1}$) 14-Jan-2004

$$P(r) \sim \beta_s(r) \frac{\mathcal{P}(180, r)}{4\pi} \exp(-2 \int \beta_e(r) dr)$$

Traditional aerosol lidar can not distinguish between changes in target reflectivity and attenuation between the lidar and the target

$$p_a(r) \square \frac{1}{r^2} \cdot \frac{P(180, r)}{4\pi} \beta_a(r) \cdot \exp(-2 \int (\beta_a(r) + \beta_m(r)) \cdot dr) - \text{aerosol return,}$$

$$p_m(r) \square \frac{1}{r^2} \cdot \frac{3}{8\pi} \beta_m(r) \cdot \exp(-2 \int (\beta_a(r) + \beta_m(r)) \cdot dr) - \text{molecular return}$$

$$\beta'_a(r) = \frac{P(180, r)}{4\pi} \cdot \beta_a(r) = \frac{3}{8\pi} \cdot \beta_m(r) \cdot \frac{p_a(r)}{p_m(r)}$$

The optical depth between r_1 and r_2 is derived by comparing the molecular return to that expected from a purely molecular atmosphere:

$$\tau(r_1, r_2) = \frac{1}{2} \cdot \log\left(\frac{r_1^2 p(r_2) \cdot p_m(r_1)}{r_2^2 p(r_1) \cdot p_m(r_2)}\right)$$

attenuated mol(blu), mol(blk), particulate(rd) 05-Nov-04 19:59->20:02

Attenuated backscatter ($\text{m}^{-1} \text{str}^{-1}$) 14-Jan-2004

I2 cell transmission and Doppler broadened Atmospheric Backscatter

I2 absorption

Aerosol backscatter cross section 22-Feb-2012

Particulate circular depolarization ratio 22-Feb-2012

Welcome to the University of Wisconsin Lidar Group

- [About this image...](#)

Index of Topics

- [Arctic HSRL](#): A new lidar designed for long term observations in the Arctic
- [Data: HSRL, MMCR, PAERI, MWR](#) Web access to data acquired after 01-May-2004
- [Volume Imaging Lidar](#): System description
- [High Spectral Resolution Lidar](#): System description(van mounted system used prior to May 2004)
- [Lidar Images](#): Thousand's of Lidar images acquired before 2004
- [Movies](#): MPEG animations generated from VIL data
- [HSRL with MODIS](#): Data at Satellite Overpasses, for MODIS Instrument
- [Vis5D Images](#): 3-D scattering volumes produced from VIL data
- [Project Results](#): Data products and science results from selected projects
- [Publications](#): List of Lidar Group publications
- [Operation Times and Statistics](#): Some HSRL and VIL experiments prior to 1998
- [Staff](#): UW Lidar Group staff and contact information
- [Results from Lake-ICE](#): Lake-Induced Convection Experiment

gvhsrl atten backscatter cross section 24-Feb-12

gvhsrl backscatter cross section 24-Feb-12

gvhsrl linear depolarization 24-Feb-12

gvhsrl extinction cross section, dz= 180.0 24-Feb-12

HSRL data processing corrections

- 1) Pileup correction
- 2) Baseline correction
- 3) Differential geometry correction
- 4) Geometry correction
- 5) Conversion from range to altitude
- 6) Signal time and range averaging
- 7) Molecular particulate signal separation
- 8) Compute extinction from derivative of molecular return

As the laser pulse propagates away from system the image size on the detector changes

Aerosol return and laser pulse afterpulse 11-sep-10 3:30 UT

gvhsrl backscatter 24-Feb-12 19:21-->19:35

gvhsrl optical depth 24-Feb-12 19:21-->19:35

Aerosol backscatter cross section 16-Apr-2010

GRB_20100416T1200 UTC

Attenuated backscatter ($\text{m}^{-1} \text{str}^{-1}$) 02-Oct-2004

Aerosol backscatter cross section $\text{m}^{-1} \text{str}^{-1}$ 02-Oct-2004

BRW-20041002-1200

Particulate circular depolarization ratio(%) 02-Oct-2004

BRW-20041002-1200

Attenuated backscatter ($\text{m}^{-1} \text{str}^{-1}$) 14-Jun-2004

gvhsrl backscatter cross section 10-Feb-10

Attenuated backscatter ($\text{m}^{-1}\text{str}^{-1}$) 10-Oct-2005

Aerosol backscatter cross section $\text{m}^{-1} \text{str}^{-1}$ 10-Oct-2005

YEU-20051010-1200

Particulate circular depolarization ratio(%) 10-Oct-2005

YEU-20051010-1200

15-second observation of the the boundary layer

gvhsrl scat ratio 10-Feb-10 20:23-->20:23

gvhsrl optical depth 10-Feb-10 20:23-->20:25 gvhsrl optical depth 10-Feb-10 20:23-->20:25

gvhsrl optical depth 10-Feb-10 20:22-->20:22

gvhsrl backscatter cross section 10-Feb-10

Optical depth profile for thin water cloud, 20 sec average

Aerosol return and laser pulse afterpulse 11-sep-10 3:30 UT

Advantages of 532 nm operation

- Iodine adsorption line for filtering
- Important wavelength for radiative transfer
- Allows use of doubled Nd:YAG laser
- Strong molecular scattering

Problem with 532 nm—eye safety

- Wavelength region with smallest permitted exposure
max single pulse exposure = $5\text{e-}7 \text{ J/cm}^2$

Aerosol backscatter cross section 11-Sep-2010
DNR 20100911T0000 UTC

Aerosol and molecular returns 11-sep-10 3:30 UT

Geiger-mode APD afterpulse probability

Aerosol return and cloud afterpulse 11-sep-10 3:30 UT

As the laser pulse propagates away from system the image size on the detector changes

Frequency

Molecular cal pulse 16-Apr-2009 21:00:00-->21:13:59

The transmitter frequency is scanned over \sim 20 GHz to measure the spectral bandpass of the receiver

Receiver bandpass calibration

interferometer 16-Apr-2009 21:00:00-->16-Apr-2009 21:13:59

An interferometer is used to determine frequency during the spectral scan

Completed Cal scan using interferometer freq ref 16-Apr-2009 20:59:00

Brillouin line shape at 1000 hPa (solid), Rayleigh line shape (dashed) and deviations from measured values using Tenti S6 and Rayleigh shapes

HSRL schematic – NCAR HAIPER version

Basic HSRL Equations

$$S_c = G_{ac} N_a + G_{mc} N_m ; \text{ eq 1—Signal in the combined channel}$$

$$S_m = G_{am} N_a + G_{mm} N_m ; \text{ eq 2—Signal in the molecular channel}$$

Where G_{ik} are gains of the two channels when exposed to N_a aerosol and N_m molecular photons.

Solving for N_m and N_a yields:

$$N_m = \frac{S_m/G_{am} - S_c/G_{ac}}{(G_{mm}/G_{am}) - (G_{mc}/G_{ac})} ; \text{ eq 3—Number of molecular photons incident as function of signals}$$

$$N_a = \frac{S_c/G_{mc} - S_m/G_{mm}}{(G_{ac}/G_{mc}) - (G_{am}/G_{mm})} ; \text{ eq 4 Number of aerosol photons incident as function of signals}$$

With G_{ac} = gain of the combined channel when exposed to aerosol photons

Define other gains relative to G_{ac} :

$$G_{mc} = C_{mc} \cdot G_{ac}, G_{am} = C_{am} \cdot G_{ac}, G_{mm} = C_{mm} \cdot G_{ac}$$

$$N_m = (1/G_{ac}) \cdot \frac{S_m/C_{am} - S_c}{(C_{mm}/C_{am}) - C_{mc}} = (1/G_{ac}) \cdot \frac{S_m - C_{am} S_c}{C_{mm} - C_{mc} C_{am}}$$

$$N_a = (1/G_{ac}) \cdot \frac{S_c/C_{mc} - S_m/C_{mm}}{(1/C_{mc}) - (C_{am}/C_{mm})} = (1/G_{ac}) \cdot \frac{S_c/C_{mc} - S_m/C_{mm}}{(1/C_{mc}) - (C_{am}/C_{mm})} = (1/G_{ac}) \cdot \frac{C_{mm} S_c - C_{mc} S_m}{C_{mm} - C_{mc} C_{am}}$$

The scattering ratio is then:

$$\frac{N_a}{N_m} = \frac{C_{mm} S_c - C_{mc} S_m}{S_m - C_{am} S_c}$$

The backscatter cross section, β'_a , is:

$$\beta'_a(r) = \beta_a(r) \cdot \frac{P(180,r)}{4\pi} = \frac{N_a(r)}{N_m(r)} \cdot \beta_m(r), \text{ where } \beta_a = \text{scattering cross section}, \frac{P(180,r)}{4\pi} = \text{backscatter phase function}.$$

the optical depth, τ , between two points r_1 and r_2 is:

$$\tau(r_2 - r_1) = \frac{1}{2} \cdot \log\left(\frac{r_1^2 \rho(r_2) \cdot N_m(r_1)}{r_2^2 \rho(r_1) \cdot N_m(r_2)}\right), \text{ where } \rho(r) = \text{the atmospheric density profile}$$

Thermal expansion of components effect the alignment of transmitter with the receiver. Here we consider the example of an 45 deg aluminum mountin block for a beam turning mirror.

Angle shift due to 10 deg C temperature change: $\Delta\varphi \sim \alpha \Delta T \sim 2.5 * 10^{-5} * 10$
 $\Delta\varphi \sim 250$ microradian

Problem with 532 nm—eye safety

--Wavelength region with smallest permitted exposure

$$\text{ANSI safe exposure} \leq 5 \times 10^{-7} (R/4)^{-1/4} \text{ J/cm}^2$$

Where R = the pulse repetition rate

This forces high repetition rate and large apertures

Range ambiguity limits $R < \sim 4 \text{ kHz}$, i.e. $r_{\max} < \sim 40 \text{ km}$

Cost, complexity, turbulence limit aperture to $\sim 0.5 \text{ m}$.

Thus max transmitted energy laser pulse is limited to:

$$\pi 25^2 \times 5 \times 10^{-7} \times 1000^{-1/4} = 0.174 \text{ mJ/pulse}$$

and the maximum transmitted power is:

$$0.174 \times 10^{-3} \times 4000 \text{ Hz} = 0.7 \text{ Watt}$$

Transmission of 2-cm iodine cell

Example of frequency locking

Figure 4. A block-diagram of the experimental setup.

Brillouin lock parameters

Specifications

Transmitter: **GVHSRL**

Langley HSRL

Repetition rate	4000 Hz	200 Hz
Wavelength	532 nm	532 nm
Energy	82 uJ	2.5 mJ
Ave power	339 mW	500 mW

Receiver:

Aperture	40 cm	40 cm
Bandwidth	8 GHz	60 GHz
Quantum Eff	55%	10% (?)
Field of View	100 μ rad	250-1000 μ rad
Optical trans	~34%	57%

Signal strength ~ 1
Sky Noise ~ 0.24

0.27 (Area*Pwr*QE* η)
3.4 (Area*BW* Ω *QE* η)

AHSRL transmit-receive telescope

- The 20 mm diameter linearly-polarized laser beam is converted to circular polarization by $\frac{1}{4}$ wave plate before expansion 40 cm.
- The received signal is converted to linear polarization on return through the $\frac{1}{4}$ wave plate. Approx. 10% of the signal is separated to measure the cross-polarized component. The parallel-polarized component is separated from the transmit beam by the thin-film polarizer.

High Spectral Resolution Lidar at North Slope ARM site

Arctic HSRL Specifications

- Altitude coverage $\sim 75\text{m} \rightarrow 30\text{ km}$
- Altitude resolution 7.5 m
- Time resolution :
 - -Backscatter, depolarization profiles 0.5 sec
 - -Optical depth profiles >20 sec
- Eye safe at output
- Wavelength 532 nm
- Power $200 \rightarrow 600\text{ mW}$
- Repetition rate 4 kHz
- Field of view 45 microradians
- Sky noise filter bandwidth 8 GHz
- Typical background noise/bin >1 photon/1000 laser pulses
- Receiver diameter 0.4 m
- I2 filter bandwidth 1.8 GHz

High Spectral Resolution Lidar
Ed Eloranta—Univ. of Wis.
<http://lidar.ssec.wisc.edu>

OD computed from average transmission 26-Sep-10 16:00 ---> 16:59

