Inverse modeling to retrieve vertical profiles of aerosol extinction and trace gases

> Sunil Baidar, Hilke Oetjen, Barbara Dix, Rainer Volkamer 2011/11/01

- Primary quantity measured by AMAX-DOAS is Slant Column Densities (SCDs).
- SCD- Integrated concentration of species along the light path.
- Difficult to interpret.
- Requires knowledge of effective light path
- Radiative transfer program
- Inversion technique

$$y = F(x, b) + \varepsilon$$
$$y \approx Kx + \varepsilon$$

where $K = \frac{\partial F(x)}{\partial x}$

Optimal Estimation

- Uses apriori profile, x_a to constrain the problem.
- provides best solution out of all the possible solutions.

Linear Solution:

 $\widehat{\boldsymbol{x}} = \overline{(\mathbf{K}^{\mathrm{T}}\mathbf{S}_{\varepsilon}^{-1}\mathbf{K} + \mathbf{S}_{a}^{-1})^{-1}(\mathbf{K}^{\mathrm{T}}\mathbf{S}_{\varepsilon}^{-1}\mathbf{y} + \mathbf{S}_{a}^{-1}\mathbf{x}_{a})}$

Profile retrieval Algorithm

Aerosol Extinction Profile Retrieva

- O₄ • O₂ dimer
- Concentration of O₄ is well known
 - depends only on temperature, pressure and O_2 concentration
- Any deviation in O_4 scds from the simulated O_4 scds for the Rayleigh atmosphere is due to the extinction of light by aerosols and clouds.
- O_4 measurement at 360, 477, 577 and 630 nm.

Radiances

Relative radiance ratio of differen retrieve aerosol extinction profiles.

Example Aerosol Extinction Profile

Only 0 degree elevation angle!

Example Trace Gas Profiles

IO

CHOCHO

- Aerosol extinction profile from NOAA TOPAZ lidar and AMAX-DOAS.
- Different air masses being probed by AMAX-DOAS and TOPAZ at a given segment.
- How do we maximize the overlap between different instruments?

Instrument	Species / Parameters	Detection limit / Accuracy / Comment	Time / Space resolution	PI / Institution
CU AMAX-DOAS	IO BrO OCIO NO ₂ HCHO CHOCHO	0.1 ppt 1 ppt 0.7 ppt 10 ppt 120 ppt 3 ppt	Acquisition: 2-30 sec Profile scan: 1-5 mins Vertical resolution: ~ few 100 m– few km	Rainer Volkamer (CU Boulder)
HARP	Photon actinic flux: J ₀₃ , J _{N02} , J _{OVOC} , J _{RX} , J _{IxOy} , etc. Hyper spectral irradiance Surface albedo Cloud optical depth + Percent cloud cover Cloud/Aerosol eff. radius Single scattering albedo Asymmetry parameter	~ 9 % (280–680 nm) < 5 % (260–2217 nm) < 3 % ~ 3 % ~ 5 % ± 0.03 ~ 0.1	0.1 – 3 sec 1 sec inferred by difference from hyper spectral irradiance data	Sam Hall (NCAR/ACD) Sebastian Schmidt (CU Boulder)
GV-HSRL	Aerosol Backscatter, Depolarization, Extinction altitude profiles	1x10 ⁻⁹ m ⁻¹ sr ⁻¹ ~ 1% 2x10 ⁻⁸ cm ⁻¹	Acquisition: 0.5 sec Profile time: 3-5 mins Vertical res.: 7.5 m Range: 30 km	Ed Eloranta (U Wisconsin)
Microwave Temperature Profiler	Altitude temperature profile	1 K (near plane) < 2 K (within 6km from plane)	Profile scan: 18 sec Vertical resolution: ~150 m to few km	Julie Haggerty (NCAR/RAF)

Discussions

Radiative transfer calculation would be greatly improved by having independent measurement of

- 1. Temperature Profile (MTP)
- 2. Aerosol extinction profile (HSRL)
- 3. Cloud layer altitude (HSRL)
- 4. Surface albedo (HARP)
- 5. Aerosol optical depth (HARP)
- 6. Single scattering albedo, asymmetry parameter (HARP)

Optimal Estimation:

-formally described by Clive Rodgers (Rodgers, 1976).

- Uses apriori profile, x_a to constrain the problem.
- provides best solution out of all the possible solutions.
- Linear Solution:

$$\widehat{\boldsymbol{x}} = (\mathbf{K}^{\mathrm{T}} \mathbf{S}_{\varepsilon}^{-1} \mathbf{K} + \mathbf{S}_{a}^{-1})^{-1} (\mathbf{K}^{\mathrm{T}} \mathbf{S}_{\varepsilon}^{-1} \mathbf{y} + \mathbf{S}_{a}^{-1} \mathbf{x}_{a})$$

- \widehat{x} the retrieved state vector
- \mathbf{x}_{a} the a priori information of the state
- \mathbf{S}_{a} the a priori covariance. A square matrix with the uncertainty of the a priori as diagonal elements.
- \mathbf{S}_{ϵ} covariance of the uncertainty of the measurement.
- **K** weighting function matrix.

 \mathbf{S}_{a} is also used as the tuning parameter to maximize the information content while avoiding oscillations.