NOAA flight planning support and satellite aerosol and cloud retrieval validation during TORERO

R. Bradley Pierce and Andrew Heidinger NOAA/NESDIS/STAR

Allen Lenzen¹, Todd Schaack¹, Ryan Spackman², Ru-Shan Gao², David Fahey² Chris Hostetler³, Rich Ferrare³, David Winker³ ¹ University of Wisconsin-Madison, ²NOAA ESRL Chemical Sciences Division, Boulder, CO, ³NASA Langley Research Center, Hampton, VA

Satellite Validation: Geostationary Operational Environmental Satellite – R Series (GOES-R) ABI Visible/Near-IF

• Advanced Baseline Imager (ABI): Improved spectral (3X), spatial (4X), and temporal (5X) resolution over current GOES

	BI VISID		ar-IR	Bands
GOES-R imager band	Wavelength range (µm)	Central wavelength (µm)	Nominal subsatellite IGFOV (km)	Comments for daytime viewing
1	0.45-0.49	0.47	1	"blue" visible Aerosol over land
2	0.59-0.69	0.64	0.5	GOES heritage "red" visible High res animations
3	0.846-0.885	0.865	1	Vegetation state Aerosol over water
4	1.371-1.386	1.378	2	Cirrus/upper level cloud
5	1.58-1.64	1.61	1	Cloud-top phase and particle size Snow distinction
6	2.225-2.275	2.25	2	Distinguish land, cloud, snow, and ice properties

ABI IR Bands							
GOES-R imager band	Wavelength range (µm)	Central wavelength (µm)	Nominal subsatellite IGFOV (km)	Comments			
7	3.80-4.00	3.90	2	GOES imager heritage			
8	5.77-6.6	6.19	2	GOES imager heritage			
9	6.75-7.15	6.95	2	GOES sounder heritage			
10	7.24-7.44	7.34	2	GOES sounder heritage with spectral modifications			
11	8.3-8.7	8.5	2	Cloud-top phase Ash/dust, SO ₂ , sulfates			
12	9.42-9.80	9.61	2	Ozone. GOES sounder heritage with spectral modifications			
13	10.1-10.6	10.35	2	Surface and cloud temperatures, low level moisture, dust and volcanic ash			
14	10.8-11.6	11.2	2				
15	11.8-12.8	12.3	2				
16	13.0-13.6	13.3	2	Heritage from GOES imager and sounder: temperature, cloud characteristics.			
Schmit et al, 2005							

GOES-R ABI Cloud Products

- 1. Clear sky mask (binary, 4-level, and test results)
- 2. Cloud Phase
- 3. Cloud Type
- 4. Cloud-top Height
- 5. Cloud-top Temperature
- 6. Cloud-top Pressure
- 7. Day/Night Cloud Optical Depth
- 8. Day/Night Cloud Particle Size
- 9. Day/Night Liquid Water Path
- 10. Day/Night Ice Water Path

Aerosol Products

- 1. Aerosol Detection (Smoke and Dust)
- 2. Aerosol Optical Depth (AOD)
- 3. Aerosol Particle Size (Ångström exponent)

Surface Products*

- 1. Surface SW Flux
- 2. Surface LW Flux
- 3. Albedo/SST

Legacy Sounder Products*

- 1. Temperature profile
- 2. Water vapor profile

Real-Time GOES-12 Imager Processing at CIMSS

GOES-R Cloud water path

*Subset that can be validated during TORERO

Opportunities for GOES-R Cloud, Aerosol, Surface, Sounder Validation during TORERO

HSRL (day and night)

- Cloud optical depth for optically thin clouds
- Cloud detection
- Verification of multilayer cloud detection
- Separation of cloud from suspended aerosol layers.
- Aerosol optical depth
- Aerosol detection

HARP (day only)

- Multispectral estimate of cloud microphysics.
- Surface Albedo

AMAX-DOAS (day only)

Aerosol optical depth

<u>MTP</u>

•Legacy Temperature Profile

<u>GV Insitu</u>

Legacy Temperature/moisture Profile

Ship (day/night)

- Surface downwelling SW Flux
- Surface downwelling LW Flux

TORERO Flight Planning Support: Real-time Air Quality Modeling System (RAQMS) chemical and aerosol forecasts

- 1) Real-time assimilation of MODIS Terra and Aqua AOD, MLS stratospheric ozone profiles, and OMI total column ozone
- 2) Unified stratosphere/troposphere chemistry module [Pierce et al., 2007]
- 3) Extended carbon bond scheme for oxidation of nonmethane hydrocarbons (NMHC) [Zaveri and Peters, 1999]
- 4) Four product isoprene oxidation [Carter, 1996].
- 5) Tropospheric Halogen Chemistry: BrO from sea-ice
- 6) Goddard Chemistry Aerosol Radiation and Transport (GOCART) aerosol mechanism [Chin et al., 2002]
- 7) 5-day global 1x1 degree forecasts

HIAPER Pole-to-Pole Observation (HIPPO) III

Tropospheric O_3 (< 100 ppb) as functions of θ

HIPPO III O3 data provided by Ryan Spackman, Ru-Shan Gao and David Fahey (NOAA ESRL)

RAQMS CO predictions for TORERO Field of Operations (Jan-Feb, 2011)

RAQMS O3 analysis for TORERO Field of Operations (Jan-Feb, 2011)

RAQMS CH2O predictons for TORERO Field of Operations (Jan-Feb, 2011)

NASA Tropospheric Emission Spectrometer (TES) O3 and CO retrievals for TORERO Field of Operations (Jan-Feb, 2011)

TES Tropical upper troposphere O3_{min}~35ppbv

RAQMS O3 and CO with TES Averaging Kernels (RAQMS_{ret}) for TORERO Field of Operations (Jan-Feb, 2011)

RAQMS overestimates O3 & CO in tropical upper troposphere

CALIPSO vs RAQMS AOD Jan-Feb 2011 V3-01 aerosol profile retrievals (Dave Winker, NASA LaRC)

RAQMS overestimates magnitude of AOD within SH storm track (A) and spatial extent of elevated AOD within South American convective outflow (B)

5° Lat, 10° Lon, 1km bins, CAD< -20, COT=0.0 QC=0,1 (unadjusted retrievals)

Contraction of the second					
0.0	0.1	0.2	0.3	0.4	0.5
		AC	DD	_	

CALIPSO vs RAQMS Aerosol Extinction:

-3

log[km⁻¹]

-2

RAQMS underestimates marine boundary layer aerosol extinction and overestimates aerosol extinction in the tropical upper troposphere and SH storm track relative to CALIPSO

Note log scale!

Thu Oct 27 16:43:09 2011

Example of TORERO Flight planning support:

January 14, 2011

Tropical Upper-troposphere Convective outflow

GOES-12 6.7µm (Water Vapor Channel) Brightness Temperature : January 14, 2011

./patmosx_g12_geo_0015_2011_014.level2b

Note: NRT imagery will be provided during TORERO

GOES-R Cloud Type retrieval (GOES-12 Proxy Data)

./patmosx_g12_geo_0015_2011_014.level2b

Note: NRT product will be provided during TORERO

CLEAR WATER

SUPERCOOLED WATER

CIRRUS

ICE

GOES-R Cloud-top Pressure retrieval (GOES-12 Proxy Data)

./patmosx_g12_geo_0015_2011_014.level2b

Note: NRT product will be provided during TORERO

CALIPSO Vertical Feature Mask Jan 14, 19:05Z 2011

UTC: 2011-01-14 19-05-37 Version: 3.01 Nominal Daytime 90 Vertical Feature Mask UTC: 2011-01-14 19:19:03.0 to 2011-01-14 19:32:31.7 Version: 3.01 Nominal Daytime 30 60 25 30 20 SH Storm Track 0 ġ, 15 3 (L -30 **Marine Aerosols** 2 (L) -60 -90 Lat -64.96 Lon -65.73 -59.19 -53.29 -47.32 -41.31 -35.28 -29.22 -23.14 -17.05 -180 -135 -90 -45 n 45 90 135 18 -65.73 -70.11 -73.37 -75.93 -78.06 -79.90 -81.54 -83.05 -84.47

2 = cloud

1 = clear ai

aerosol

stratospheric laver

= surface

subsurface

totally attenuated

L = low/no confidence

RAQMS CO predictions for TORERO Field of Operations (Jan 14 18Z, 2011)

RAQMS CH2O predictions for TORERO Field of Operations (Jan 14 18Z, 2011)

RAQMS Aerosol predictions for TORERO Field of Operations (Jan 14 18Z, 2011)

CALIPSO vs RAQMS Aerosol Extinction:

RAQMS overestimates the <u>spatial extent</u> of elevated aerosol extinction in the tropical upper troposphere and mid-latitude storm track relative to CALIPSO

CALIPSO vs RAQMS Aerosol Extinction:

RAQMS overestimates the spatial extent of elevated aerosol extinction in the tropical upper troposphere and mid-latitude storm track relative to CALIPSO

2011

RAQMS BCOC and Sea-Salt Aerosol

Extinction : Jan 14, 19Z 2011

> RAQMS elevated aerosol extinction is mostly Black and Organic Carbon (BCOC) except in marine boundary layer (SeaSalt)

RAQMS Aerosol Extinction and Relative

Humidity: Jan 14, 19Z 2011

> RAQMS elevated aerosol extinction closely tied high relative humidity

Errors in estimating BCOC hydroscopic growth?

Contributions to TORERO hypothesis testing

Hypothesis #1: Ocean sources of oxygenated VOC (OVOC) and reactive halogen species (RHS) impact atmospheric composition in the MBL, and in the FT as a result of deep convective transport.

- What can we learn about the chemical composition of cirrus clouds, and do they bias the satellite view of aerosols, and reactive gases?
 - Understanding model aerosol extinction high bias in convective outflow
 - Treatment of initial hydrophilic and hydrophobic partitioning in biomass
 burning
 - Cirrus contamination in satellite AOD retrievals
 - Convective transport of isoprene oxidation products

Hypotheses #3: Reactive gases released from the ocean are relevant to chemistry and climate.

- How relevant are ocean sources of OVOC and RHS on global scales?
 - RAQMS provides estimates of non-ocean sources of OVOC

Example Images of Real-Time GOES Imager Processing at CIMSS (False Color Imagery

Extra Slides

Demonstration of:

•Real-time assimilation of Microwave Limb Sounder (MLS) stratospheric ozone profiles

•Real-time assimilation of Ozone Monitoring Instrument (OMI) total ozone column

•Real-time incorporation of Moderate Resolution Imaging Spectroradiometer (MODIS) fire detection

RAQMS AOD Assimilation Procedure

Demonstration of:

•Real-time assimilation of MODIS Aerosol Optical Depth (AOD)
•Real-time incorporation of MODIS based biomass burning emissions

Assessment of RAQMS O3, CO, and Aerosol **Extinction Forecast Skill**

•Anomaly Correlations (AC)

- •Correlation between forecast and analysis
- •May-June mean removed
- •Spectrally truncated to wavenumber 20
- •Averaged from 20N-80N

Anomaly Correl day 5 Z 500mb n hem lat 20-80

http://www.emc.ncep.noaa.gov/gmb/STATS/html/monarch.html

Northern Hemisphere 850mb May-June 2010 Anomaly Correlations (AC) (With MLS/OMI/MODIS Assimilation)

Assimilation of O3 retrievals results in slight improvements in 850mb ozone forecasts
Assimilation of AOD retrievals results in significant improvement in 850mb extinction forecasts with useful skill at ~1.5 days

Equatorial 850mb May-June 2010 Anomaly Correlations (AC) (With MLS/OMI/MODIS Assimilation)

Assimilation of O3 retrievals results in slight improvements in 850mb ozone forecasts
Assimilation of AOD retrievals results in significant improvement in 850mb extinction forecasts with useful skill at ~1.5 days

Equatorial 200mb May-June 2010 Anomaly Correlations (AC) (With MLS/OMI/MODIS Assimilation)

Assimilation of O3 retrievals results in slight improvements in 850mb ozone forecasts
Assimilation of AOD retrievals results in significant improvement in 850mb extinction forecasts with useful skill at ~1.5 days

GOES/SSFR Cloud Validation during CalNex

GOES-R ABI DCOMP Cloud Optical Thickness (COT) using GOES-11 0.6 and 3.9 micron channels off of Southern California at 22Z on May 16, 2010 along with P3 (red) and ship (black) tracks (left panel). Timeseries of SSFR aircraft (brown) spectral cloud optical thickness retrievals and GOES-11 DCOMP retrievals sub-sampled along the aircraft (red) (right panel).

Solar Spectral Flux Radiometer (SSFR) data provided by Sebastian Schmidt (CU Boulder)

MODIS/HSRL AOD Validation during CalNex

P

High Spectral Resolution Lidar (HSRL) data provided by Chris Hostetler and Rich Ferrare (NASA LaRC)

Bias due to underestimate in urban surface reflectivity

MODIS V05 Aerosol Optical Depth (AOD), B200 flight track (red) and MODIS/B200 coincidences (thick red) over Southern California on May 20, 2010 (upper left panel). Timeseries of HSRL (blue) and coincident MODIS (red) AOD along the flight path (lower panel). Comparison between mean RAQMS and HSRL extinction profiles during the period where MODIS shows significant overestimates in AOD relative to HSRL (19:30- 20:12Z) (upper right).