TM4-ECPL model : Oceanic Sources for Oxygenated VOC and Aerosols

Stelios Myriokefalitakis ^{1,2}, Nikos Daskalakis^{1,2} and <u>Maria Kanakidou¹</u> ¹ Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, 71003, P.O. Box 2208, Heraklion, Greece ² Institute of Chemical Engineering and High Temperature Chemical Processes, Foundation for Research and Technology Hellas, Patras, 26504, Greece

<u>stelios@chemistry.uoc.gr ; mariak@chemistry.uoc.gr</u>

TORERO questions that we could investigate

- **1**. How does atmospheric composition in MBL compares to that in FT?
- 2. How does CHOCHO form in the FT?
- **3**. What is CHOCHO vertical distribution in the MBL and the FT (spatial and temporal variability)?
- 4. CHOCHO formation from VOC oxidation vs heterogeneous sources.
- 5. How can we explain the mismatch between global model predictions and satellites? (ocean source?)
- 6. How relevant are ocean sources of OVOC on global scales?

TM4-ECPL Global 3D Model

34 hybrid layers,

up to 0.1 hPa

4°x6° ~~ 2°x3°

- Meteorology input from ECMWF ERA-Interim project dataarchive: 3 hourly data
- Anthropogenic emissions from CIRCE inventories
 - Biogenic Emissions from POET 2000 inventories have been adopted.
 - Biomass Burning Emissions from GFED v2
 - Marine emissions of POA, hydrocarbons and sea-salt particles and marine SOA are parameterized in the model as outlined in **Myriokefalitakis et al., Advan. Meteo. , 2010**
 - The model considers the sulfur and ammonia chemistry and the oxidation of C_1 - C_5 Volatile Organic Compounds (VOC) including isoprene as well as a simplified terpenes and aromatic chemistry (**Myriokefalitakis et al., ACP, 2008**)

Multiphase chemistry as outlined in **Myriokefalitakis et al., ACP,** 2011

- Gas-particle partitioning for inorganics is solved using ISORROPIA
 II (Fountoukis and Nenes, 2007)
- On-line gas-phase chemistry and secondary aerosol formation calculations together with primary carbonaceous, dust & sea-salt particles Tsigaridis et al., ACP, 2006; Tsigaridis& Kanakidou AE, 2007

TM4ECPL - TORERO Simulations

Simulation	Description		
S0	Base Run – All CHOCHO Emissions		
C1	As for S0 but without oceanic CHOCHO		
51	Emissions		
S2	As for S1 but without anthropogenic		
	and biomass burning CHOCHO emissions		

For this presentation, all simulations have been performed in 6°x4° resolution (longitude x latitude) in 34 vertical hybrid layers up to 0.1 hPa

CHOCHO Budget Analysis

CHOCHO (Tg/yr)	GLOBAL	TORERO – 500m	TORERO – 2000m	TORERO - TA
Burden	0.024	0.0004	0.0005	0.0007
Ocean Emissions	20.0	3.068	3.068	3.068
Anthropogenic & Biomass Burning Emissions	11.1	0.070	0.070	0.070
Net Gas Phase Chemistry	1.0	-0.656	-0.789	-0.908
Net Cloud Chemistry	-3.9	-0.033	-0.153	-0.186
Net Particle Chemistry	-3.3	-0.034	-0.044	-0.090
Dry Deposition	19 .0	1.61	1.61	1.61
Wet Deposition	5.9	0.242	0.31	0.35

CHOCHO Schematic Budget TORERO Ocean Domain @ 0-500m

Burden (Tg) is average of monthly samples; Residence times (days) is burden divided by total sinks; all budget terms and fluxes (Tg yr⁻¹) are annual totals.

CHOCHO Schematic Budget TORERO Ocean Domain @ 0-2000m

Burden (Tg) is average of monthly samples; Residence times (days) is burden divided by total sinks; all budget terms and fluxes (Tg yr⁻¹) are annual totals.

CHOCHO Budget Analysis

TORERO CHOCHO Gain (%) 100 91.1 80 60 % 40 20 6.5 1.0 0.6 0.8 0 Emissions **ISOPRENE Ox.** TERPENEOx. AROMATICS Ox. Other VOCs Ox.

Oceanic Emission Contribution to CHOCHO levels

CHOCHO(pptv) - No Ocean, Surface, Annual Mean, 2009

TM4ECPL, VC (0-500m) CHOCHO fraction, OCEAN / NO_OCEAN, Annual Mean, 2009

TM4ECPL, CHOCHO Ocean Emissions (kg/gridbox), Annual Mean 2005

Global CHOCHO Distributions

CHOCHO(ppt), Zonalm Mean, Annual Mean, 2009' Zonal mean 200 400 pressure (hPa) 600 800 1000 -50 50 0 latitude (deg) 0.0 6.0 12.0 18.0 24.0 30.0

CHOCHO(pptv), Surface, Annual Mean, 2009

TM4ECPL, VC-CHOCHO(1e15 molecules/cm2), Annual Mean, 2009

TORERO CHOCHO Distributions

Vertical distribution of ocean contribution –zonal mean

TORERO air mass back trajectories

TORERO questions that we could investigate

- **1**. How does atmospheric composition in MBL compares to that in FT?
- 2. How does CHOCHO form in the FT?
- **3**. What is CHOCHO vertical distribution in the MBL and the FT (spatial and temporal variability)?
- 4. CHOCHO formation from VOC oxidation vs heterogeneous sources.
- 5. How can we explain the mismatch between global model predictions and satellites? (ocean source?)
- 6. How relevant are ocean sources of OVOC on global scales?