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Goals Statement of work:

HARP irradiances (Sam Hall) [yr Yr 1: Experiment (no participation) -
1] collect HARP irradiances.
AMAX-DOAS AOT [yr1] HSRL aerosol extinction Yr 2: We will derive spectral surface
profiles (Ed Eloranta) [yr 1] albedo from irradiance measurements
provided by the HARP spectrometers
\ l (P1 Samuel Hall) using HSRL aerosol

extinction profiles and AOD below and
Surface albedo for cloud-free aerosol SSA and above the plane from AMAX-DOAS as

conditions [yr 2] L asymmetry parameter input to an atmospheric correction

?

scheme. Derive mass concentrations of
chlorophyll-a and CDOM from the
surface albedo spectra.

Use flux divergence legs (one
below, one above aerosol layer)

Use existing dual-channel and new
spectral retrievals (e.g., for CDOM)
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v Yr 3: Extend the work from yr 2 to
Cloud optical thickness, cloudy conditions and retrieve cloud
effective radius [yr 3] optical properties, surface albedo, and

ocean color products simultaneously.
HARP transmittance-based.

For inhomogeneous clouds, effective cloud
cover will be derived.

Currently no aerosol SSA and ASY for cloud
scenes, but this may change (working on it).




How do we derive surface albedo?
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Overflying the ocean at high and low altitude allows us to check the performance of our
atmospheric correction. Dotted lines show flight level albedo; solid lines derived surface
albedo from high level (blue), and low level (red).

We need aerosol optical thickness, single scattering albedo, and asymmetry parameter as
input. We will get extinction profiles / optical thickness from HSRL/AMAX-DOAS.

For SSA and ASY, we will use parameterizations...

...or, if we have high and low level measurements of the same scene, we can also derive
SSA and ASY from HARP measurements (next slide).



How do we derive aerosol optical properties?
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How do we derive cloud properties from transmittance?

developed a new spectral retrieval that can do
it (McBride et al., 2011).

R T=15 Derive optical thickness from transmitted
0.5 PRt P A =3 irradiance (radiance).
e 7=55

S0.4} T=T5 : : :
Ic — =5 um It is usually hard to also get effective radius
= . . .
go 3 oy =25 um and thus liquid (ice) water path, but we have
S
i

—
N

This retrieval works for optical thickness
Wavelength (nm) above 3. Together with HSRL, we can cover
the whole cloud optical thickness range.

16 May 2010
‘ ! ‘ ! |
30— SSFR _MWR +— Insitu] | Theimpact of cloud inhomogeneities and
CTE 250 research topic in our group
2200 (Kindel et al., 2010).
% 1500 s G FUF . SWlaas o K.
100; We have used these retrievals for extended

cal/val efforts (collaboration Brad Pierce).

22
UTC In-situ data courtesy Sara Lance / NOAA
Microwave data courtesy Chris Fairall; Dan Wolfe / NOAA



How do we derive cloud properties from reflectance?
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Test adequacy of single scattering model (habit) in Cirrus clouds with spectral consistence.
There may also be a correlation between spectral shape of cloud albedo and spatial
inhomogeneity, as well as a capability for detecting mixed-phase clouds (ongoing research).
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How do we handle aerosol-immersed broken clouds?
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Handle cloud gaps (diffuse irradiance) and clouds (direct beam) separately. Use 3D model
to understand the different effects of cloud inhomogeneities (spectrally-dependent net
horizontal photon transport), aerosols, and the surface.

This is mainly done within two NASA projects (not scope of TORERO):
(a) remote sensing theory — retrieval of cloud/aerosol properties from spectral radiance
(b) OCO project: Impact of cloud inhomogeneities on CO, retrievals.

Both could also benefit the TORERO science team.



