TOGA/ Fast Gas Chromatograph Mass Spectrometer (FGCMS) – prototype for HIAPER

Eric Apel Alan Hills Dan Riemer, U. Miami Rich Lueb

Gas chromatograph/Mass Spectrometer

Measurement campaigns

TRACE-P IDEAS MIRAGE INTEX-B ARCTAS OASIS MIRAGE-Shanghai

Trace Organic Gas Analyzer (TOGA)

The National Center for Atmospheric Research

- High sensitivity VOCs/OVOCs to ppt
- High selectivity 2-D GC/MS
- Rapid 2 minutes
- Altitude independent 0-50,000 feet
- semi Autonomous

10-L Cryogenic LN2 dewar

TOGA compounds (may do a subset or switch subsets on the fly)			
Hydrocarbons	Propane 1-Butene <i>i</i> -Butene Butane <i>i</i> -Butane Benzene Toluene Ethyl Benzene <i>t</i> -2-Butene <i>c</i> -2-Butene Pentane 1,3-Butadiene Limonene	Isoprene t-2-Pentene c-2-Pentene i-Pentane o-Xylene m/p-Xylene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene α -Pinene β -Pinene Camphene Myrcene	
Oxygenates	Formaldehyde Acetaldehyde Propanal Butanal Pentanal Methacrolein Methyl Vinyl Ketone Methyl Butenol	Methanol Ethanol Acetone Butanone 2-Pentanone 3-Pentanone Methyl t-Butyl Ether	
Halocarbons	Chloroform (CHCl ₃) Methylene chloride (CH ₂ Cl ₂) Methyl chloride (CH ₃ Cl) Methyl bromide (CH ₃ Br) Tetrachloroethane (CH ₂ Cl ₄) Tetrachloroethylene (C ₂ Cl ₄) Bromoform	Tetrachloromethane (CCl ₄) CFC-113 HCFC-141b HCFC-134a 1,2-Dichloroethane (C ₂ H ₄ Cl ₂) Methyl Iodide (CH ₃ I) iodoform	dibromomethane diodomethane bromocjhloromethane bromoiodomethane chloroiodomethane
Nitrogen and sulfur compounds	Acetonitrile Dimethyl Sulfide (DMS)	DMSO?	

on Counts

15000

10000

5000

0

0

100

200

300

HCHO pptv

400

500

600

700

TOGA Formaldehyde Lab Data

Signal-to-noise (S/N) of 195 peak = 35

LOD for 5 x S/N = 195* 5/35 = 28 pptv, but because the peak we use for the S/N calculation contains some background, the peak used for the S/N calculation is actually ~ 2x larger than it should be relative to the noise so the detection limit at 5x is closer to 50-60 pptv.

Calibration curve for the TOGA low concentration formaldehyde study. Five measurements were obtained for each data point using formaldehyde standards introduced to TOGA. The standards were generated using the permeation system described in Figure 2 coupled to the dilution apparatus described in Figure 4.

UTC TIme

CH₃CN Acetone MeOH

All species depleted in MBL

TRACE Organic Gas Analyzer - TOGA - VOC measurements INTEX-B Role of Ocean in Global Atmospheric Budgets

Singh et al., 2003, D. Riemer, I. Faloona, private correspondence

Previous Work:

Methanol, Acetone, etc.. – large ocean source – Nature Singh et al, 2001

- small ocean sink (Singh et al, 2003)

Acetone: Marandino et al (Saltzman (2005)) – Fluxes of Acetone

- large ocean sink

- Gradient fluxes of ~ -3 -12 um m² day⁻¹ (Eddy Co-variance)

Preliminary results (back of envelope) here:

Flux (Assume MBLL – MBLP = 0)

Acetone -5.5 um m² day⁻¹ (Saltztman - \sim - 9 um m² day⁻¹)

Methanol-8.32 um m² day⁻¹

CH3CN ran out of time this morning..

Preliminary results w/ losses:

Flux (without boundary layer loss but not production)

Acetone -4.7 um m² day⁻¹

Methanol-3.3 um m² day⁻¹

CH3CN ran out of time this morning..