HIAPER Atmospheric Radiation Package (HARP) Samuel Hall, Kirk Ullmann

Rick Shetter – NSERC/University of North Dakota

Peter Pilewskie, Sebastian Schmidt, Bruce Kindel – University of Colorado

Barry Lefer – University of Houston Manfred Wendisch – University Mainz Dieter Schell – Enviscope GmbH Rainer Schmitt – Metcon GmbH Warren Gore – NASA Ames

Roger Hendershot Steve Gabbard

Actinic flux

Frosted Dome

Measures Energy Flux through a sphere

Equally responsive to photons from all directions

Total Actinic Flux (sum of downwelling and upwelling) also known as spherical radiance

Molecules (and people) are 3-D and can absorb photons from any direction

Flat Plate or Integrating Sphere

Measures Energy Flux through a plane

Cosine response (i.e., insensitive to photons from 90 deg)

Many uses in radiative transfer including **Net Irradiance** (difference between downwelling and upwelling)

Energy passing through a layer is sensitive to direction

To stabilize, or not to stabilize?

Actinic Flux

•NO Stabilization Required

•Optics insensitive to orientation

Irradiance

Stabilization Required

•Optics strongly sensitive to orientation

HARP Actinic Flux

Spectral Specifications

Measurement	Optical	Spectral	Wavelengths	Pixels	Sampling	FWHM (nm)
	Design	Description	(nm)		(nm)	
Actinic Flux	Concentric	UV-VIS	280-680	512	0.8	1.7 @ 297 nm,
	Domes					2.4 @ 400 nm
Irradiance	Integrating	VIS-NIR	260-1090	1024	0.8	3
Si	Sphere					
Irradiance	Integrating	NIR	903-2217	256	5	16
InGaAs	Sphere					

Actinic Flux

j[O3->O2+O(1D)] *j* [NO2->NO+O(3P)] *j*[H2O2->2OH] *j*[HNO2->OH+NO] *j*[HNO3->OH+NO2] *j* [CH2O->H+HCO] *j* [CH2O->H2+CO] j[CH3CHO->CH3+HCO] j[CH3CHO->CH4+CO] *j* [C2H5CHO->C2H5+HCO] j[CHOCHO->products] *j* [CHOCHO->HCO+HCO] j[CH3COCHO->products] j[CH3COCH3->CH3CO+CH3]

j[CH3OOH->CH3O+OH] *j* [CH30N02->CH3O+NO2] j[PAN->products] j[CH3COCH2CH3-> **Products**] j[CH3CH2CH2CHO-> C3H7+HCO] j[CH3CH2CH2CHO-> C2H4+CH2CHOH] *j* [HO2NO2-->HO2+NO2] *j* [HO2NO2-->OH+NO3] j[CH3CH2ONO2-> **Products**]

Calculated photolysis frequencies from actinic flux

j [Br2->Br+Br] *i*[BrO->Br+O] *j*[Br2O->products] *j*[BrNO3->Br+NO3] *j*[BrNO3->BrO+NO2] j[BrCl->Br+Cl] *j*[HOBr->HO+Br] *j*[BrONO2->Br+NO3] *j*[BrONO2->BrO+NO2] *j* [Cl2+hv->Cl+Cl] *j*[ClO->Cl+O] *j* [CIONO2->CI+NO3] *j* [CIONO2->CIO+NO2]

Additional photolysis frequencies under construction (including lodine compounds)

Irradiance errors due to deviation from the horizontal

Wendisch et al., 2001

Goals

- Measure spectrally resolved actinic flux density and calculated photolysis frequencies
- Addition of halogen photolysis calculations
- Measure spectrally resolved stabilized irradiance (~ +/- 5 degrees attitude) for calculated products (CU: Schmidt, Kindel,...)
- Radiative transfer modeling of irradiance effects (e.g. albedo, cloud properties) on actinic flux and photolysis frequencies