CU LED-CE-DOAS: a fast optical sensor for NO2, IO, glyoxal, water, aerosol extinction

Sean Coburn¹, Ryan Thalman,^{1,2} Rainer Volkamer^{1,2}

¹Dept. Chemistry and Biochemistry, and ²CIRES, CU Boulder

- Instrument description
- KA-11-04 cruise preliminary data
- Laboratory characterization of fast sensor
- TORERO Hypothesis

- MAX-DOAS data from four cruises in 2008-2009
- Sinreich et al., 2010, ACP: Daytime only data
- What is the diurnal cycle?

Light Emitting Diode Cavity Enhanced DOAS (CU LED-CE-DOAS)

420-490nm, R(460nm) =0.999965 L_{eff}= 13-17km QE65000 0.5 nm FWHM

Thalman and Volkamer, 2010, AMT

KA-11-04 Cruise track

Test CU-LED-CE-DOAS on RV KA:

- Stability of optical cavity confirmed
- Stack emissions were a problem
- Limited tubing on-board
- Needed to shift inlet location to get clean air flow.

Data SIO, NOAA, U.S. Navy, NGA, GEBCO US Dept of State Geographer © 2011 Europa Technologies © 2011 Google

7°26'53.62" N 129°43'02.79" W elev -15596 ft

Google

Eye alt 4791.64 mi 🔘

Setup on KA

Spectral proofs

Diurnal profiles

Fast sensor: Time constant

Conclusion

- KA-11-04 identified challenges with ship exhaust:
 Need to sample from bow (distance to wetlab ~ 65m)
- CU LED-CE-DOAS fast sensor development remaining challenges:
 - Pressure drop in cavity
 - At 120 SLPM expect time delay of 2-3 sec to cavity (longer into the wetlab)
 - Nyquist sampling frequency goal: 2 Hz or 4Hz data?
- CU SMAX-DOAS: O₄,NO₂,CHOCHO,HCHO,IO, BrO
- In-situ Ozone monitor