

T-PARC: EOL IN-SITU DATA FROM THE NRL P-3

JORGEN B. JENSEN, EOL/RAF

READ PROJECT MANAGER'S QA-REPORT BEFORE USING DATA

INSTRUMENTATION

```
State parameters:
   Static pressure (heated pitot tube)
   Temperature (2x un-heated Rosemount)
   Dewpoint temperature (cooled mirror)
Air speed and flow angles:
   Heated pitot tube (air speed)
   5-hole radome (not heated)
       Attack, sideslip
Position:
   Inertial system (Honeywell)
       Lat, long, pitch, roll, heading
       Ground speed, accelerations
   GPS (Garmin)
       Lat, long, ground speed
   Radar altitude
```

Add list of QA checks done:

Pre-field and post-field calibrations

Visual timeseries analysis

Reverse heading legs

Attack = pitch analysis

Temperature recovery factor

Spike removal

Flagging (blank-out) bad data (value of -32767 inserted)

Temperature comparison with dropsondes

(identify damaged sensor)

INSTRUMENTATION

Choice of parameters when there are more than one sensor:

PSX Pressure

ATX Temperature

TASX True air speed

etc.

"Best" ends in "X"

TOTAL OF 23 RESEARCH FLIGHTS

DATA UPLOADED TO THE MAIN EOL T-PARC DATA ARCHIVE:

http://data.eol.ucar.edu/master_list/?project=T-PARC

Data in 1-sps netcdf file format

Temperature (2x un-heated Rosemount)

Radio interference - occasionally

Temperature (2x un-heated Rosemount)

lcing - very damaging.

Results in stretched wire and thus calibration shift.

Multiple sensors changed, but redundant sensors gave mostly good measurements.

Periodic problems noted.

Temperature (2x un-heated Rosemount)

Icing Elements
breaking.

Bad data blanked out, but there is an impact on many derived parameters, e.g. winds.

Dewpoint temperature: Cooled mirror type.

Mostly fine, occasional oscillations

Inability to cool mirror in very dry air

- not a serious problem during T-PARC on-station times

Attack and sideslip angles

5-hole radome pressure measurement (Note: un-heated)
Radome re-surfaced =>
different geometry around holes (calibration change).

Attack-sensor malfunctioned 3 times and was swapped. Historically exceptionally stable.

Stable sensor in the lab; not on the aircraft. Day-to-day post-flight calibration change.

Main impact is on calculated updraft.

Updraft has lower accuracy than horizontal winds.

In-flight calibration to attack-angle sensitivity and offset

In-flight calibration to differential pressure (QCFC and QCRC)

Corrections needed:

Data error at near midnight GMT file starts in some files.

If users find any errors, then please contact jbj@ucar.edu

T-PARC: EOL IN-SITU DATA FROM THE NRL P-3

JORGEN B. JENSEN, EOL/RAF

READ PROJECT MANAGER'S QA-REPORT
BEFORE USING DATA
(README-file in the data archive)