Southeast Nexus (SENEX)

Studying the Interactions Between Natural and Anthropogenic Emissions at the Nexus of Air Quality and Climate Change

A NOAA Field Study in the Southeast U.S. in Summer 2013

Scientific Motivation

Southeast U.S.:

 Many secondary pollutants and radiative forcings are higher than elsewhere in the Nation

How do anthropogenic and biogenic emissions interact and affect air quality and climate?

Sulfate Aerosol

- Sulfate still represents a major fraction of submicron aerosol in the East and Southeast
- Formation in gas phase vs. clouds poorly understood

Models that include cloud oxidation overestimate sulfate [McKeen, 2007]

POM_Annual 11.7 5.5 4.9 4.3 3.7 3.0 2.4 1.8 1.2 0.6 0.0 0.0 0.0 0.0 (µg/m²) WPROVE V Report IMPROVE Urban Site CSN Site

Goldstein [2009]

Organic Aerosol

- Observations show highest organics in Southeast
- Satellite AOT shows strong seasonal cycle: biogenic SOA? (But: IMPROVE shows larger cycle for sulfate)
- Role of aqueous-phase processing?
- Role of nighttime oxidation of biogenic VOCs?
- What fraction of SOA is controllable?

Tropospheric Ozone

Fiore [2009]

- Many models are biased high in the Summertime SE U.S.
- Yield and fate of isoprene nitrates?
- Nighttime chemistry and removal of NO_x?
- Difficulty in modeling the structure of the nighttime boundary layer?

Part of the motivation: Regional Climate Change and its causes

NOAA Science Challenge Workshop [2011]

- Eastern U.S. has not warmed since 1950 and has received more precipitation [Portmann, PNAS 2009]
- Connection with aerosol distribution?
- SENEX contribution:
 - 1. Describe and improve understanding of aerosol distribution
 - 2. Describe climaterelevant properties of aerosol

Main Science Questions

- 1. What are the emissions of aerosol, aerosol precursors and greenhouse gases in the SE U.S.?
- 2. What is the composition and distribution of aerosol in the SE U.S.?
- 3. What are the formation mechanisms of secondary species (ozone, sulfate and organics) in the SE U.S.?
- 4. Which deposition processes are critical for determining atmospheric concentrations of aerosol, ozone and NOy?
- 5. What are the climate-relevant properties of aerosol in the SE U.S.?

NOAA WP-3D Instrument Payload

Operated out of Smyrna regional airport 110 flight hours, June 1 – July 15

Flight Plans: O₃-SOA Formation in Clear Air

Oxidants & aerosol formation in:

- Urban plumes: NOx, SO₂, POA,
 BC and anthropogenic VOCs
- Power plant plumes: NOx, SO₂, no POA, no anthropogenic VOCs

With high and low biogenic VOCs

Cities: Atlanta, St. Louis, Nashville, Birmingham, Indianapolis

Flight Plans: O₃-SOA Formation in Clear Air

Flight Plans: SOA & Sulfate Formation in Clouds

- Compare chemical evolution of plume above and below clouds
- Identify and quantify cloud-modified formation of sulfate, organics, others above cloud
- Successfully done during 1 flight in TexAQS 2006; will be looking for opportunities during SENEX

Flight Plans: Other Goals

- 1. Nighttime chemistry and SOA formation
- 2. Regular overpasses of Centreville site
- 3. Inter-comparison flights with C-130
- 4. Emissions from natural gas production in Haynesville Shale
- 5. Emissions from biofuel refineries (Archer Daniels Midland, Decatur, IL)

Forecast, Imagery and Modeling

- 1. GOES visible and IR: every 15 min, archived for the entire study period, U.S. and sub-regions
- Composite radar base reflectivity
 Examples for DC3 (Owen Cooper): www.esrl.noaa.gov/csd/groups/csd4/metproducts/2012dc3/

Forecast, Imagery and Modeling

- 3. Flexpart forecasts (biomass burning, anthropogenic, perhaps simplified biogenic)
- 4. Flexpart analyses: time series and footprints for WP-3D flight tracks and ground sites

Forecast site already up (Jerome Brioude): www.esrl.noaa.gov/csd/groups/csd4/forecasts/senex/

-85

Forecast, Imagery and Modeling

- 5. WRF-Chem model output: not forecasts (Stu McKeen and Ravan Ahmadov)
- 6. GFDL AM3 model: output along WP-3D flight tracks and for ground sites (Larry Horowitz, Jingqiu Mao)
- 7. Emissions: Map viewer (Greg Frost)
- 8. Real time NOAA WP-3D data on top of various imagery and model forecasts

Synergies with SOAS

SOAS and **SENEX** were designed in close communication:

- 1. Interaction of anthropogenic and biogenic emissions to form oxidants and aerosol
- 2. Implications for climate

Are important science goals for both campaigns

Synergies between platforms:

- 1. SOAS ground sites: 24/7 measurements, high chemical detail
- 2. SOAS C-130: biogenic emissions
- 3. NOAA WP-3D: process-oriented studies, regional and vertical perspective to ground sites
- 4. Data inter-comparisons between platforms are needed

Synergies with NAAMEX

1. Air mass characterization

Coordinate on forecasted transport events NOAA WP-3D measurements complement C-130 NOx, NOy, VOCs, aerosol: air mass origin and history

2. Power plant emissions

Coordinate on which plants to target (CEMS data)
More complete characterization of emissions

Synergies with TROPHONO

Relevant Measurements Onboard the NOAA WP-3D:

NO, NO2, NOy chemi-luminescence Ryerson

Nitrate AMS Middlebrook

HONO (?) CIMS Thornton

PANs I⁻ CIMS Roberts

Alkyl nitrates iWAS2 Gilman

HNO3 CIMS Neuman

NO3, N2O5 CRD Brown

Share data

Coordinate on flight plans

Perform inter-comparison flight

