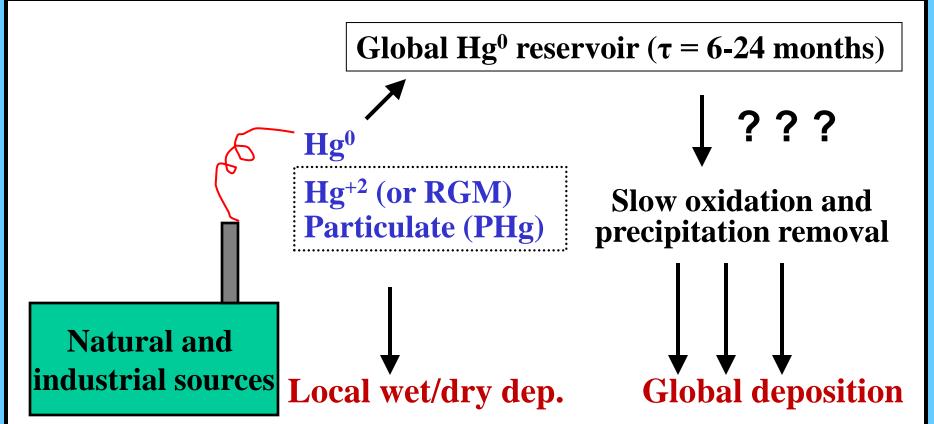
Organics, Mercury and NOx, oh my!

C130 aircraft operations during NOMADSS

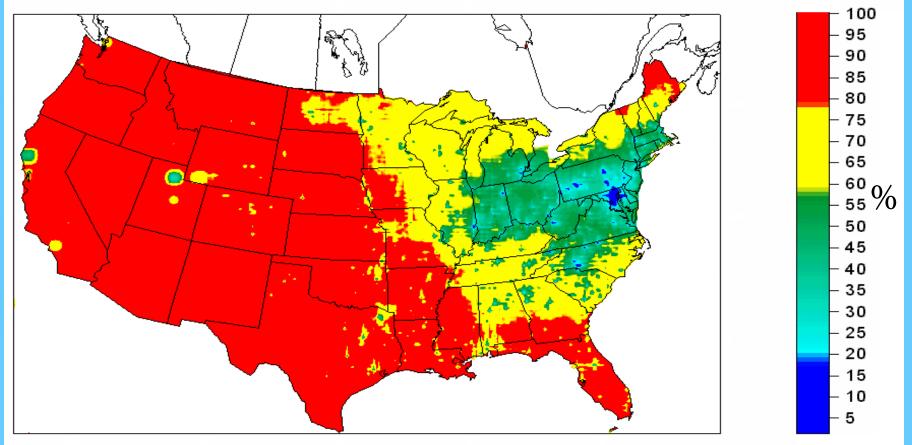
Dan Jaffe



NAAMEX

- Mercury is an important environmental toxin. New rules on coal fired pp will cost ~2 billion \$US per year when fully implemented. Yet there are large uncertainties in our understanding of the global sources and cycling of Hg.
- In past 10 years we have extensive observations of Asian Hg outflow, but almost none from US source region.
- NAAMEX follows on the successful WAMO project, which was a much smaller effort focused on validation of our airborne Hg measurement capabilities.

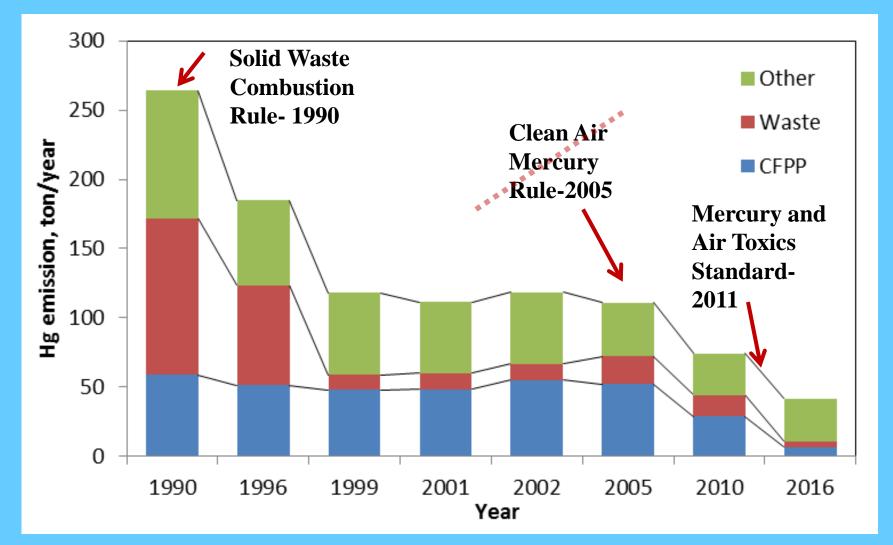
Basic Atmospheric Mercury Cycle


Whether the Hg is emitted as Hg⁰, Hg⁺² (RGM) or particulate Hg (PHg) is critical. RGM and PHg will deposit locally, whereas Hg⁰ will enter the global Hg cycle due to its long lifetime.

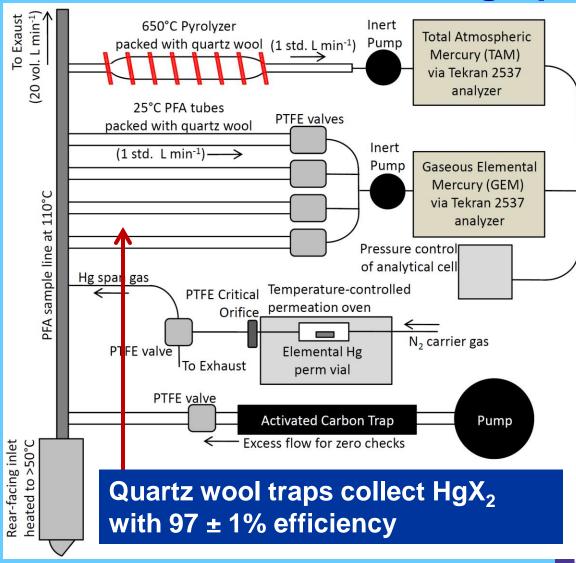
Hg(II) compounds = Reactive Gaseous Mercury = RGM

Particulate Mercury = PHg UNIVERSIT

ING

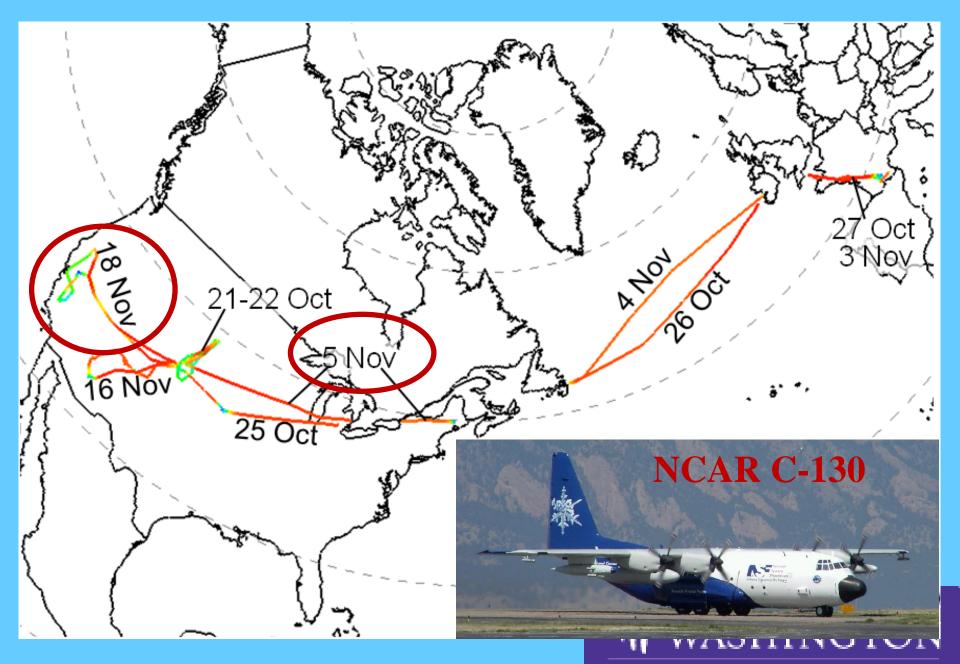

Model calculated contribution of non-US sources to Hg deposition (%)

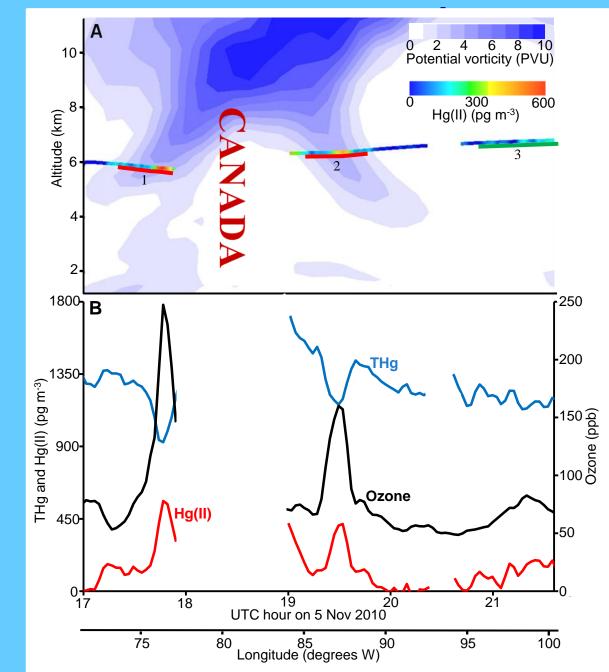
Seigneur et al., 2004. (Similar results in Selin et al 2007 and Strode and Jaffe 2008 using GEOS-CHEM model.)


Trend in U.S. anthropogenic Hg emission

INGTON

Slide from Yanxu Zhang.

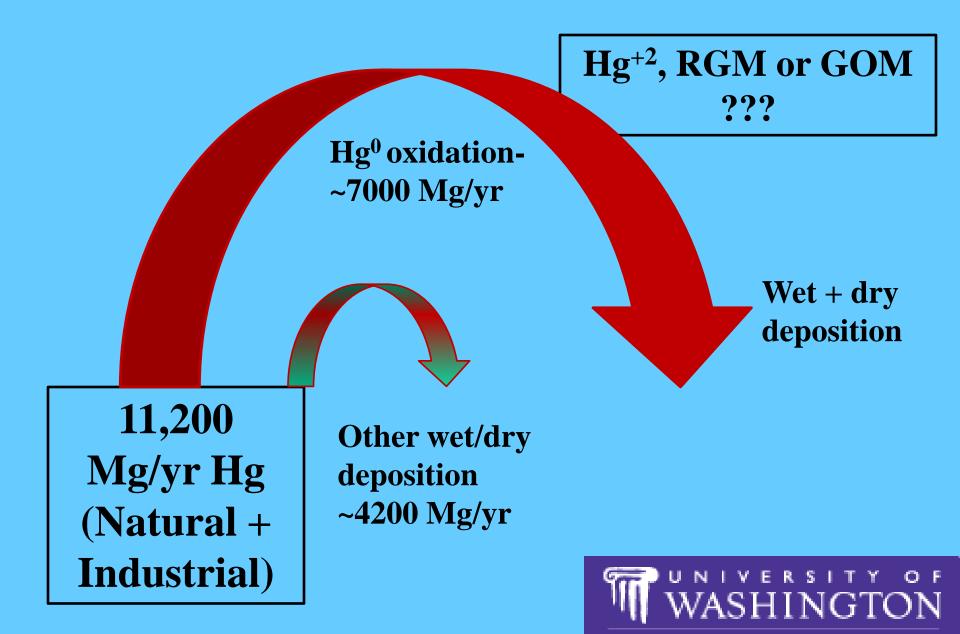

A new tool to understand atmospheric Hg: UW-Detector of Oxidized Hg Species (UW-DOHGS)


Lyman and Jaffe 2011

WAMO measurements, Fall 2010

Nov 5th flight: First direct observations of Hg²⁺ in UT/LS

Lyman and Jaffe, Nature Geosciences (2011)


WASHINGTON

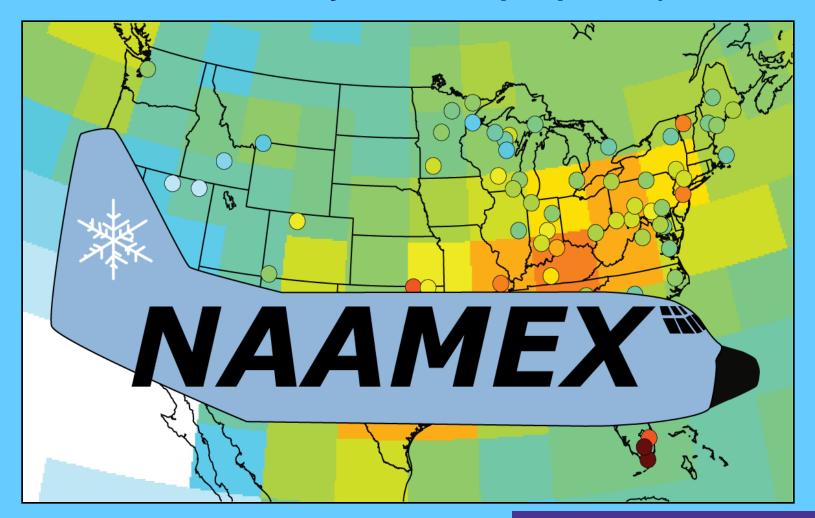
Key uncertainties in global Hg cycle

- Industrial emissions (at least +/-30%);
- Speciation of industrial emissions;
- Natural emissions (+/- 100%);
- Wet/dry deposition over most of the globe;
- Ability to measure Hg⁺² in the atmosphere;
- Atmospheric chemistry of Hg;
- Cause of recent declines in global Hg.

Global Hg budget (based on Selin et al 2008)

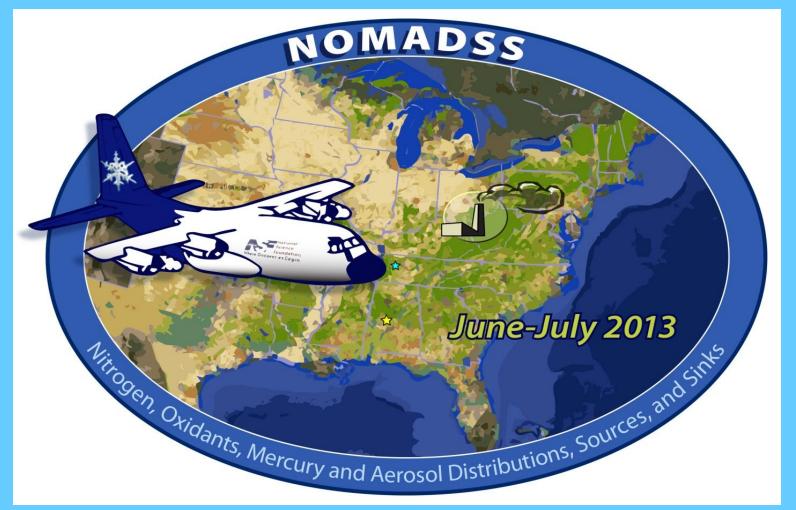
Mt. Bachelor, Oregon, 2.8 km above sea level

The only free tropospheric research site on the west coast of the U.S.


Continuous observations of CO, O₃, aerosols and Hg since 2004.

 Frequent detection of Asian pollution plumes (Jaffe et al., 2005; Weiss-Penzias et al., 2006; 2007; NAS/NRC 2009; UNEP/HTAP 2009);
Supported by NSE and EPRI

Supported by NSF and EPRI.



North American Airborne Mercury Experiment (NAAMEX) Southern Oxidant and Aerosol Study (SOAS) Re-NOx-ification Pathway in the Troposphere (TROPHONO)

NOMADSS Flight tracks and science goals Dan Jaffe

NOMADSS

18 Research fights, 150 hours 7 different flight patterns A variety of models run in forecast and NRT mode for fight planning

Science goals combine goals from SOAS, NAAMEX and TROPHONO

SOAS: Quantify biogenic emissions and their interactions with anthropogenic pollutants and to understand the implications for atmospheric chemistry, air quality and climate.

NAAMEX: Constrain emissions of mercury from major source regions in the Eastern United States and quantify the distribution and chemical transformations of speciated mercury in the troposphere.

TROPHONO: Investigate the role of particulate nitrate photolysis in the cycling of reactive nitrogen species in the troposphere, focusing on HONO as an intermediate product.

C-130 instrument package

Instrument	Lead	Location
RAF CDP Cloud Probe	Rogers	wing pod
RAF PCASP Aerosol Probe	Rogers	wing pod
RAF SPP-300 Aerosol Probe	Jensen	wing pod
RAF UHSAS Aerosol Probe	Rogers	wing pod
RAF King Probe Liquid Water	Schanot	wing
RAF OPHIR-III In Cloud Temperatu	Beaton	wing pod
RAF Cloud Base Temperature	Schanot	fuselage
RAF Radiometric Surface Tempera	Schanot	fuselage
RAF Up/Down IR Irradiance	Haggerty	fuselage
CARI NO-NO2	Weinheimer	cabin / HIMIL (1
CARI Fast Ozone	Campos	cabin / HIMIL (1
CARI Carbon Monoxide	Campos	cabin / HIMIL (1
CARI Picarro Carbon Dioxide	Flocke	cabin / HIMIL (1
EOL / HAIS GT-CIMS (2 units)	Huey	cabin / HIMIL (2
EOL / HAIS TOGA	Apel	cabin / HIMIL (3
NCAR/ACD PTRMS	Karl	cabin / inlet
UW GEM Mercury	Jaffe	cabin /Special ir
UW GOM Mercury	Jaffe	cabin /Special ir
UW GOM / PHG	Jaffe	cabin /Special ir
CU HOx / H2SO4	Cantrell	cabin / Special i
SUNY HONO / HNO3	Zhou	cabin / HIMIL (4
SUNY pNO3 / pOrganics	Zhou	cabin / SDI inlet
SUNY Bulk Aerosol	Zhou	cabin / SDI inlet
UCLA Mini - DOAS	Stutz	cabin / window
Up/Down Vis & UV Irradiance	Haggerty	fuselage

Horizontal and vertical profiles over rural Eastern U.S. regions with various vegetation types, daytime, eight flights (types 1a, 1b,1c,1d).

<u>SOAS objectives</u>: direct quantification of VOC, ozone and NO_x surface fluxes and reconcile differences with "top-down" emission estimates; better understanding of $HO_x/NO_x/ozone/$ organics/aerosol distributions, sources and sinks.

NAAMEX objectives: Characterization of major Hg source region, examination of vertical profile of Hg⁰ and Hg⁺².

<u>TROPHONO objectives</u>: Examination of horizontal and vertical distributions of HONO, HNO_3 , pNO_3 and NO_x in the continental background air masses; collection of bulk aerosol samples for photochemical experiments in laboratory.

Horizontal and vertical profiles over rural

Eastern U.S. regions

with various vegetation

types, early afternoon/night, one flight. **SOAS objectives:**

direct quantification of VOC, ozone and NO_x surface fluxes and reconcile differences with "topdown" emission estimates; better understanding of $HO_x/NO_x/ozone/organics/aerosol distributions,$ sources and sinks.

<u>NAAMEX objectives</u>: Characterization of major Hg source region, examination of vertical profile of Hg⁰ and Hg⁺².

<u>TROPHONO objectives</u>: Examination of horizontal and vertical distributions of HONO, HNO_3 , pNO_3 and NO_x in the continental background air masses; examination of nighttime HONO formation and accumulation in the PBL and FT.

Horizontal and vertical profiles over rural Eastern U.S. regions with various vegetation types, early-late morning, one flight. SOAS objectives: direct quantification of VOC, ozone and NO_x surface fluxes and reconcile differences with "top-down" emission estimates; better understanding of HO_x/NO_x/ozone/organics/aerosol distributions, sources and sinks. **<u>NAAMEX objectives</u>:** Characterization of major Hg source region, examination of vertical profile of Hg⁰ and Hg⁺². **TROPHONO objectives:**Examination of horizontal and vertical distributions of HONO, HNO₃, pNO₃ and NO_x in the continental background air masses; examination of maximal HONO nighttime accumulation and its morning photolytic decay in the PBL and in the FT

Ohio Valley transect	SOAS objectives:
and profiling , daytime,	direct quantification of VOC, ozone and NO _x
two flights	surface fluxes and reconcile differences with "top-
	down" emission estimates; better understanding of
	HO _x /NO _x /ozone/organics/aerosol distributions,
	sources and sinks.
	<u>NAAMEX objectives</u>: Characterization of most
	concentrated Hg source region in North America,
	examination of vertical profile of Hg ⁰ and Hg ⁺² .
	TROPHONO objectives: Examination of
	horizontal and vertical distributions of HONO,
	HNO ₃ , pNO ₃ and NO _x in the continental
	background air masses;; evaluation of relative
	HONO source strengths from photo-enhanced NO _x
	reaction on aerosol surface <i>vs</i> p-NO ₃ photolysis in
	urban and industrial plumes.

High elevation transect to west and profiling, daytime, two flights. **SOAS objectives: Direct quantification of VOC,** ozone and NOx surface fluxes and reconcile differences with "top-down" emission estimates; better understanding of HOx/NOx/ozone/organics/aerosol distributions, sources and sinks. **<u>NAAMEX objectives</u>**: Examination of vertical profile of Hg⁰ and Hg⁺² in region where models predict high Hg⁺². **TROPHONO objectives:** Examination of horizontal and vertical distributions of HONO, HNO₃, pNO₃ and NO_x in the continental and oceanic air masses; collection of bulk aerosol samples for photochemical experiments in the laboratory.

	Flight pattern 6
Florida/North Atlantic transect and profiling, daytime, two flights	SOAS objectives: Direct quantification of VOC, ozone and NOx surface fluxes and reconcile differences with "top-down" emission estimates; better understanding of HOx/NOx/ozone/organics/aerosol distributions, sources and sinks. <u>NAAMEX objectives</u> : Characterization of outflow from major Hg source region, examination of vertical profile of Hg ⁰ and Hg ⁺² , verification of model predicted gradients in Hg. <u>TROPHONO objectives</u> : Examination of horizontal and vertical distributions of HONO, HNO ₃ , pNO ₃ and NO _x in the continental and oceanic air masses;

Offshore outflow flight: daytime, two 9hr flights requested, early to late July SOAS objectives: N.A.

NAAMEX objectives: Characterization of outflow from major Hg source region, examination of vertical profile of Hg⁰ and Hg⁺², verification of model predicted gradients in Hg. <u>TROPHONO objectives</u>: Examination of distributions of HONO, HNO₃, pNO₃ and NO_x in the continental and oceanic air masses; Collection of bulk aerosol samples for photochemical experiments in the laboratory.

P.I. Schedule

Dates	Who	Flight pattern
June 1-15	Alex Guenther	1,2
June 15-30	Dan Jaffe	4,5,7
July 1-5	Xianlaing Zhou	3,6,7

Key Challenges/Coordination issues

- Coordination between P.I.s to achieve all NOMADSS goals;
- Coordination between C-130, NOAA P-3, and other aircraft??
- Coordination with SOAS ground sites.

