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Near-real-time analyses

GEOS-Chem simulations at 0.5x0.67

degree nested for North America

Hg, CO, potentially full chemistry

simulations

Allow us to compare preliminary data with

model results to guide planning decisions
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Roughly uniform
concentrations

of Hg(0) throughout
troposphere, consistent
with long lifetime.

Possible surface
enhancements in
source regions

Hg(II)?



Resolution of source regions: now
able to model at finer scale
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Fig. 12. Mercury distnbution in the boundary layer (<2kmagl)
during ARCTAS flights over Califormaa and Nevada (June 2008).
Sources are 1denfified through comelations with other species (CO,
03, CH;CN,_ HCN).




Comparisons for Hg: Coal-influenced

T o CO, other pollution tracers will help
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Figure 4. Scatterplot of Hg” (ng m™) versus CO (ppbv) 4.5
concentrations for Okinawa 2004. Observations are in 47 I
black, model in red, and model Asian tracer contribution in . ||
green. The mercury tracers are from the standard simulation. -
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How much of a signal
will we see given
recent emissions
decreases?

Fluliized Bed Combustion or
Reagant Injection
2%

SO2 control by % of generation, 2011




2012 vs 2011 SO2 emi

25,000+

v Linv

20,000+

15,000+

10,000+

2012 502 Emissions (tons)

2011 SO2 Emissions (tons)

() Ohio

15,000

O

20,000

sSsions

e | i | &~/

25,000 30,000 35,000

Q2 2011

il ]




Speciation of Hg emissions
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Figure 4. The relationship between efficiency of FGD and RGM
betore FGD.

Wang et al., 2010

FGD changes
speciation of mercury
at point of emission:

Less Hg(II) relative to
Hg(0)

But, in-plume reduction
IS an ongoing
question...



Comparisons for Hg: Free Trop.

RH vs RGM (model @ MBO) We expect to see

Fry enhanced Hg(II) in
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enhanced Hg(II) in
dry, higher-altitude
air.
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Comparisons for Hg: MBL
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