
Southern Oxidant and Aerosol Study

- NSF funded \$4 million in individual investigator proposals
- NSF's overall investment in SOAS is \$8+ million
- EPA originally planned to fund 8 proposals, but increased investment to 14 proposals
- NOAA's commitment to fly the P3 for SENEX was an important impetus
- SOAS is unique as a 'grass roots' field campaign
- One of my personal favorite SOAS facts:
 - EPA funded a university scientist to fly an instrument on NOAA's plane

REgional Investigation of Local and Long-range ChemistrY (REILLY)

Flux tower site near fish hatchery

Current Met Measurements at CTR

			Time Resolution
Variable	Z (magl)	Analyzer/Sensor	(min)
WS/WD	10	RMYoung 81000 sonic	5
T/RH/BP	9	Paroscientific Met4A	5
T/RH	2	Vaisala	5
PAR	2	Licor	5
precipitation	2	ETI-NOAH IV	5
aerosol/cloud	50-15,000	JenOptik CHM 15k	5

Current Chemical (gas) at CTR

Variable	Z (magl) Analyzer/Sensor	Time (min)
CO	10	Thermo 48i	5
SO ₂	10	Thermo 43i	5
NO	10	Thermo 42i	5
NO ₂	10	photolysis/Thermo 49i	5
HNO ₃	10	continuous denuder diff/Thermo 42i	5
NO _v	10	cat. reduction/Thermo 42i	5
NH ₃	5	continuous denuder diff/Thermo 42i	5
Tot. PANs	5	thermophotolytic/Thermo 42i	5
Tot. Alkyl Nitrates	5	thermophotolytic/Thermo 42i	5

Current Chemical (PM) CTR

Variable	Z	Analyzer/Sensor	Time
Continuous PM _{2.5} Mass		TEOM	5
Continuous PM _{2.5} SO ₄		cat. reduction/Thermo 43i	5
Continuous PM _{2.5} NO ₃		cat. reduction/Thermo 42i	5
Continuous PM _{2.5} NH ₄		cat. oxidation/Thermo 42i	5
Continuous PM _{2.5} TC/EC	5	Sunset	5
dry Babs (550 nm)	5	Radiance Research M903	5
dry Bsp	5	Magee 2ch. Aeth	5
ambient Bsp	5	Optec NGN-2a	5
	5		
Discrete PM _{2.5} Mass		filter/gravimetry	1440, daily
Discrete PM _{2.5} ions		filter/IC	1440, daily
Discrete PM _{2.5} major/minor elements		filter/XRF	1440, daily
Discrete PM _{2.5} water-soluble metals	5	filter/ICPMS	1440, daily
Discrete PM _{2.5} OC/EC	5	filter/TOR	1440, 1 in 3
Discrete PM ₁₀ Mass	5	filter/gravimetry	1440, 1 in 3
==	5	filter/IC	1440, 1 in 3
Discrete PM ₁₀ ions		•	· ·
Discrete PM ₁₀ major/minor elements	5	filter/XRF	1440, 1 in 3
Discrete PM ₁₀ water-soluble metals	5	filter/ICPMS	1440, 1 in 3

Speciated deposition measurements at CTR

Variable	Z	Analyzer/Sensor	Time
wet deposition ions	2	bucket/IC	10080
wet deposition total-Hg	2	glass btl./CVAAS	10080
wet deposition trace elements	2	poly btl./ICPMS	10080

Confirmed Flux Tower Measurements

OH, HO_2+RO_2 , H_2SO_4-CIMS

OH reactivity – comparative reactivity method

NOx - CRDS

Peroxides, o-acids –CIMS

OH, HO₂, RO₂ - GTHOS

OH reactivity - OHR

O₃, NO, NO₂ - Thermo

Confirmed Tower Inlet

```
Organic acids HRToF-CIMS
Flux of BVOC and oxidation products- PTR-TOFMS
BVOC flux, relaxed eddy accumulator – GCMS
Glyoxal gradient – LIP
HCHO flux, gradients – LIF
NO<sub>2</sub>, PANS, ANs NO fluxes and gradients – TD-LIF
NO/NO<sub>2</sub>/NH<sub>3</sub> – chemillumescence
NO_3/N_2O_5 - CRDS
N<sub>2</sub>O<sub>5</sub> reactivity
Submicron NR aerosol composition and size distribution — HR-ToF-AMS
2 potential aerosol mass (PAM) flow reactors
        - with OH, O<sub>3</sub>, NO<sub>3</sub> oxidation + AMS&SMPS
Aerosol volatility – thermal denuder
```

Aerosol number size distribution - SMPS

Confirmed Ground Measurements

ISFS and ISS AVOC, BVOC, RONO₂ – 2DGC PAN/MPAN, GC-ECD RONO2 - CIMS Hi-vol filter samples SOA tracers 14C TC, EC, OC TD-GCxGC-VUV/EI-HTOFMS w/ and w/o derivitization PM_1 and $PM_{2.5}$ – with offline chem. Analysis NO₃-API-ToF-CIMS EI-HR-MS for I/SVOCs Mist chambers PILS-AMS-CCN HTDMA Hourly speciation of org. aerosols and semi-volatiles by SVTAG Hygroscopicity SMPS +OPS (similar to DAASS) Inorganic ions + TC, Org.N, light absorption spectra of dissolved organics (SJAC-TC/ON) Inorg. Ions in gas+ptcl. (URG) Organic Aerosol Volatility and Polarity Separator (VAPS) CAPS PMex SSA GIT SCAPE trailer with PILS-BrnC-WSOC, OCEC, O₃, NO_x, NO₂, TEOM, 7λ aetholometer,

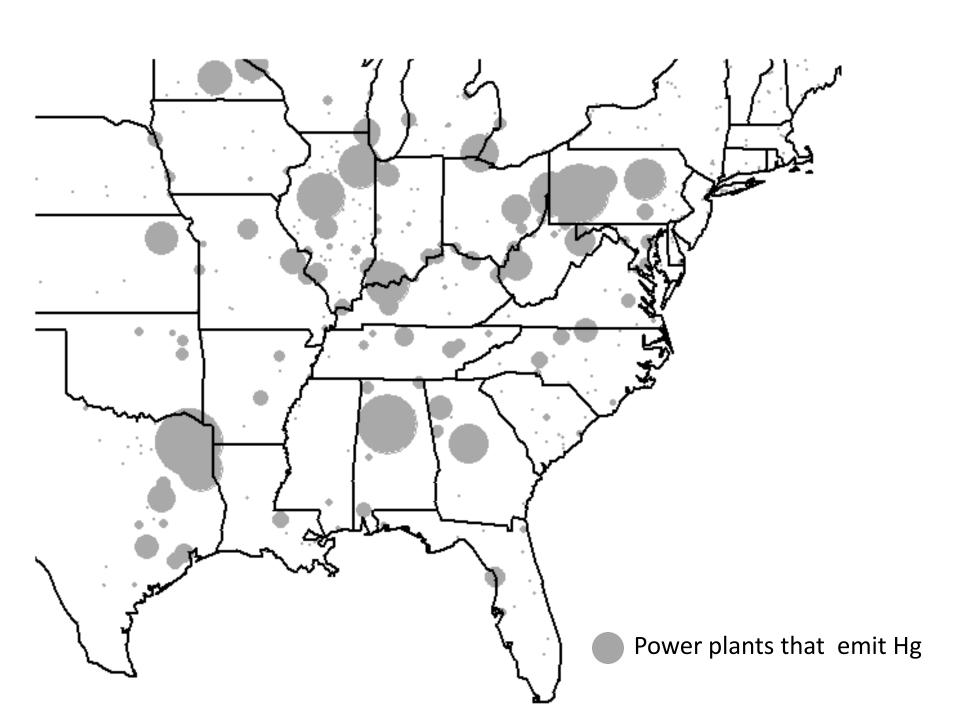
PILS-IC online metals

hygroscopicity SMPS + OPS + computer (similar to DAASS; Stanier et al., 2004) Aerosol optical properties, absorption, single particle soot with temperature and RH conditioning (2 PAXs, SP2) Aerosol extinction as a function of wavelength (360 - 420 nm) using cavity enhanced absorption spectroscopy Aerosol volatility, Thermal Denuder and Condenser Mist chambers for water soluble gas experiments **Aerosol Phase** SEMS particle size distribution MARGA gas/aerosol ion chromatography **PSM** TSI CPC CAGE chambers w/ HR-Tof-AMS, PILS-IC, SMPS, HTDMA, CCNc, APS ROS-HiVol(1) and PCM (2) filters f(RH) dry/ambient nephs

Community Modeling Effort

R.Pinder: pinder.rob@epa.gov

- Common datasets for emissions, meteorology, boundary conditions, and land use / cover for REILLY time period
- Enhances the scientific value of modeling studies because enables inter-comparison
- Saves \$
- Issues:
 - Projection and grid resolution
 - VOC speciation (prefer SAPRC?)

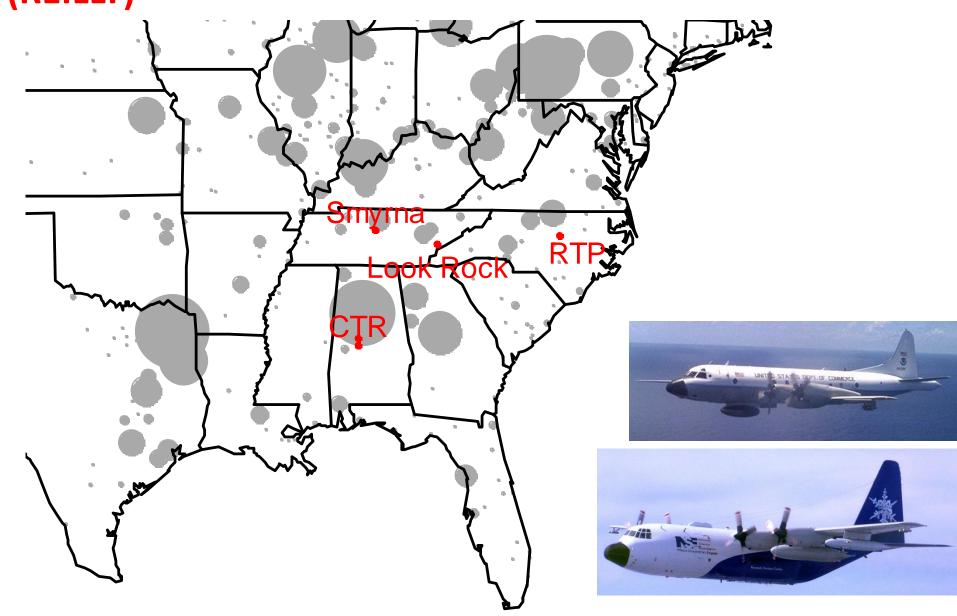


http://tinyurl.com/SOAS-logistics

Biogenic emissions and anthropogenic pollution interact and affect atmospheric photo- oxidation chemistry and subsequently air quality and climate.

• Extra information

- Lat and lon of look rock, TN:
- 35°38'0.24"N 83°56'30.12"W:
- 83.9417 35.6334


The National Electric Energy Data System (NEEDS) is the database of existing and planned-committed units which are modeled (as understood by EPA) that are currently operational in the electric industry are termed as "existing" units. Units that are not currently operating but are firmly anticipated to be operational in the future, and have either broken ground (initiated construction) or secured financing are termed

"planned-committed".

```
[1] "Bituminous"
                                            Unique fuels
[2] "Natural Gas, Distillate Fuel Oil (FO)"
[3] "Hydro"
[4] "Bituminous, Subbituminous"
                                    [15] "Petroleum Coke"
[5] <del>"Wind"</del>
                                    [16] "Landfill Gas"
[6] "Natural Gas"
                                    [17] "Pumped Storage
                                    [18] "Solar"
[7] "Distillate FO"
                                    [19] "Nuclear Fuel"
[8] "MSW"
                                    [20] "Residual Fuel Oil"
[9] "Geothermal"
                                    [21] "Natural Gas, Distillate FO,
[10] "Biomass"
                                         Residual Fuel Oil"
[11] "Fossil Waste"
                                    [22] "Natural Gas, Residual FO"
                                    [23] "Distillate Fuel Oil, Residual FO"
[12] "Subbituminous"
                                    [24] "Lignite, Subbituminous"
[13] "Waste Coal"
                                    [25] "Tires"
[14] "Non-Fossil Waste"
```

[26] "Lignite

REgional Investigation of Local and Long-range ChemistrY (REILLY)

