

PREDICT

PRE-Depression Investigation of Cloud systems in the Tropics

Overview of PREDICT Science Opportunities Kyle Griffin and Lance Bosart University at Albany/SUNY, Albany, NY Support provided by NSF grant AGS-0935830

Photo Credit: Carlye Calvin (UCAR)

Events of Interest

Vortex Interaction Near Genesis Danielle Earl

Dry Air "Troubles" Earl "Gaston"

"The South American Connection" Karl Matthew

Late September W. Caribbean Gyre Matthew Nicole Gridded data presented here created via operational ECMWF analyses and 6-h forecasts, 0.28125° resolution

Vortex Interactions

Danielle vs. PGI 34L

Earl and a non-pouch northern vortex

Pouch Interaction: Danielle

Pre-Danielle: 0000 UTC 17 August

ECMWF PW/250 Z/700 Wind/925-850 Rel. Vort.

Pre-Danielle: 0000 UTC 19 August

ECMWF PW/250 Z/700 Wind/925-850 Rel. Vort.

PGI 31L (future Danielle) ECMWF: 20100819 00Z INIT

PGI 33L

PGI 31L (future Danielle)

GFS: 20100819 00Z INIT

PGI 33L

Pre-Danielle: 0000 UTC 20 August

Pre-Danielle: 0000 UTC 21 August

TD 6: 0000 UTC 22 August

TS Danielle: 0000 UTC 23 August

Dividing Streamlines

Adapted from Wang, Montgomery, and Dunkerton 2009

Broken or disconnected streamlines can indicate the possibility of air mass confluence (i.e. they are not completely divided), allowing air from the environment into the pouch (green circles)

Indicate boundaries between flow regimes, generally the pouch and its environment

TRMM and UV (850 mb; Moving) 18Z29AUG2007 Adapted from Fig. 12, PREDICT EDO

Dividing Streamline forecasts valid 0000 UTC 21 Aug All levels include additional circulation to the east of pre-Danielle

Interaction occurs when dividing streamlines begin to cross/pinch? Opening up of streamlines signals mixing of pouches?

Vortex Interaction: Earl

Pre-Earl: 0000 UTC 23 August

ECMWF 850 hPa Rel. Vort./Height and 250 hPa Irr. Winds

2010082300 V000 Units: s⁻¹10⁻⁵, dam, m s⁻¹

10 m s⁻¹

Northern vortex appears to dominate of the pair

Pre-Earl: 1200 UTC 23 August

ECMWF 850 hPa Rel. Vort./Height and 250 hPa Irr. Winds

2010082312 V000 Units: s⁻¹10⁻⁵, dam, m s⁻¹

10 m s⁻¹ →

Pre-Earl: 0000 UTC 24 August

ECMWF 850 hPa Rel. Vort./Height and 250 hPa Irr. Winds

2010082400 V000 Units: s⁻¹10⁻⁵, dam, m s⁻¹

10 m s⁻¹

Pre-Earl: 1200 UTC 24 August

ECMWF 850 hPa Rel. Vort./Height and 250 hPa Irr. Winds

2010082412 V000 Units: s⁻¹10⁻⁵, dam, m s⁻¹

Pre-Earl: 0000 UTC 25 August

ECMWF 850 hPa Rel. Vort./Height and 250 hPa Irr. Winds

2010082500 V000 Units: s⁻¹10⁻⁵, dam, m s⁻¹

10 m s⁻¹ ___

Dividing Streamline forecasts valid 0000 UTC 25 Aug

Lower-level streamlines larger to NW, encompass dry (lower PW) air and low-level vorticity remnants

So... How can we better forecast pouch/vortex interactions?

Do these interactions have a noticeable influence on the genesis potential of the resulting pouches? Will dividing streamlines prove to be a useful tool to forecast/analyze these interactions?

Dry Air "Troubles"

Earl, in its early stages

Gaston, at the bookends of its life

Dry Air: Earl

TS Earl: 0000 UTC 25 August

ECMWF PW/250 Z/700 Wind/925-850 Rel. Vort.

TS Earl: 1200 UTC 25 August

ECMWF PW/250 Z/700 Wind/925-850 Rel. Vort.

Dividing Streamline forecast valid 1200 UTC 25 Aug

Strong circulation in the low levels, but streamlines open to northwest throughout all levels No closed pouch at 700 hPa – significantly easier dry air entrainment?

TS Earl: 0000 UTC 26 August

ECMWF PW/250 Z/700 Wind/925-850 Rel. Vort.

TS Earl: 0600 UTC 27 August

ECMWF PW/250 Z/700 Wind/925-850 Rel. Vort.

TS Earl: 0000 UTC 28 August

ECMWF PW/250 Z/700 Wind/925-850 Rel. Vort.

2010082800 V000 Units: mm, dam, kt, s⁻¹10⁻⁵

Remains tropical storm for additional 36 h; totals 96 h as a TS

Dry Air: "Gaston"

Pre-Gaston: 0000 UTC 31 August

ECMWF PW/250 Z/700 Wind/925-850 Rel. Vort.

Pre-Gaston: 0000 UTC 1 September

ECMWF PW/250 Z/700 Wind/925-850 Rel. Vort.

2010090100 V000 Units: mm, dam, kt, s⁻¹10⁻⁵

Declared a TD

Dividing Streamline analysis valid 0000 UTC 1 Sep

Pouch is not vertically stacked Lower levels centered beneath dry air/dust layer 700 hPa pouch is farther SE, closer to moisture/free of dust

Post-Gaston: 0000 UTC 2 September

ECMWF PW/250 Z/700 Wind/925-850 Rel. Vort.

Downgraded from TS to TD as NHC received G-V dropsonde data

Dividing Streamline
analysis valid
0000 UTC 2 Sepo pouch center925hPa850hPa700

Vertical structure improved 700 hPa streamlines now include dust regions Dust can now be entrained throughout column

Post-Gaston: 0000 UTC 3 September

ECMWF PW/250 Z/700 Wind/925-850 Rel. Vort.

2010090300 V000 Units: mm, dam, kt, s⁻¹10⁻⁵

Convection not sufficiently strong to maintain moisture in pouch

Initialized 0000 UTC 2 Sept

ECMWF

Initialized 0000 UTC 3 Sept

Post-Gaston: 0000 UTC 4 September

ECMWF PW/250 Z/700 Wind/925-850 Rel. Vort.

Post-Gaston: 0000 UTC 5 September

ECMWF PW/250 Z/700 Wind/925-850 Rel. Vort.

So... Can we accurately forecast the effects of dry air vs. convection on TC evolution?

> Why is the pouch not always a sufficient mechanism to protect the disturbance?

What factors lead to this insufficiency?

"The South American Connection"

Karl, prior to life as a pouch

Matthew, prior to TC genesis

"South American Connection": Karl

Pre-Karl: 0000 UTC 9 September

ECMWF PW/250 Z/700 Wind/925-850 Rel. Vort.

Pre-Pre-Karl: 0000 UTC 4 September

ECMWF PW/250 Z/700 Wind/925-850 Rel. Vort.

Pre-Pre-Karl: 0000 UTC 6 September

Pre-Pre-Karl: 0000 UTC 7 September

ECMWF PW/250 Z/700 Wind/925-850 Rel. Vort.

2010090700 V000 Units: mm, dam, kt, s⁻¹10⁻⁵

Ex-Gaston

Passage of ex-Gaston forces confluence near coast of South America

TS Hermine

Southerlies strengthen south of confluence; insitu increase in PW

Pre-Pre-Karl: 1200 UTC 8 September

ECMWF PW/250 Z/700 Wind/925-850 Rel. Vort.

2010090812 V000 Units: mm, dam, kt, s⁻¹10⁻⁵

But did Karl form from a "standard" Easterly Wave?

– **Gaston/ITCZ wave** – Quasi-Stationary ITCZ disturbance – Igor

"South American Connection": Matthew

Pre-Matthew: 0000 UTC 18 September

ECMWF PW/250 Z/700 Wind/925-850 Rel. Vort.

Pre-Matthew: 1200 UTC 20 September

ECMWF PW/250 Z/700 Wind/925-850 Rel. Vort.

Pre-Matthew: 1200 UTC 21 September

Dividing Streamline analysis valid 1200 UTC 21 Sep²⁰

Stronger winds (from G-V) on north side of system possibly leads to advection of drier air into system faster than forecast?

Moisture forced toward inflow region in streamlines on east side of pouch Vertical structure remains slightly sheared Although genesis "failed", forecast issues remained...

Pre-Matthew: 0000 UTC 22 September

Dividing Streamline analysis valid 0000 UTC 22 Sep

14

12

Streamlines generally tighter, more closed than before Horizontal dry air entrainment possibilities lessened Greatest openings now in southern quadrant

Pre-Matthew: 0000 UTC 23 September

ECMWF PW/250 Z/700 Wind/925-850 Rel. Vort.

How common/rare are these South American influences?

> What is the primary cause of these southerly wind events, especially the cross-equator flow?

> > Do interactions with dry air and terrain over northern South America serve to delay genesis of Matthew?

So...

Late Season W. Caribbean Gyre

Matthew, as a precursor to the gyre

Nicole, as a result of the gyre

Matthew/Pre-Gyre: 0000 UTC 25 September

ECMWF PW/250 Z/700 Wind/925-850 Rel. Vort.

Matthew/Pre-Gyre: 1200 UTC 25 September

ECMWF PW/250 Z/700 Wind/925-850 Rel. Vort.

Matthew/Pre-Gyre: 0000 UTC 26 September

ECMWF PW/250 Z/700 Wind/925-850 Rel. Vort.

Gyre: 0000 UTC 27 September

ECMWF PW/250 Z/700 Wind/925-850 Rel. Vort.

2010092700 V000 Units: mm, dam, kt, s⁻¹10⁻⁵

Gyre: 1200 UTC 27 September

ECMWF PW/250 Z/700 Wind/925-850 Rel. Vort.

Gyre/Pre-Nicole: 0000 UTC 28 September

ECMWF PW/250 Z/700 Wind/925-850 Rel. Vort.

Post-Gyre/Nicole: 1200 UTC 28 September

ECMWF PW/250 Z/700 Wind/925-850 Rel. Vort.

So... What causes this gyre to form, and why is this (apparently) not as common in the Caribbean compared to the WPAC?

What, if any, are the differences between this gyre and a pouch?

> Is it possible that a pouch could "birth" twin vortices and eventually TCs?