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Maximum Simplification of the Dynamic Equations
By EDWARD N. LORENZ, Massachusetts Institute of Technology!

(Manuscript received February 1, 1960)
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Tropical Cyclogenesis - a Mystery of the Tropical
Atmosphere

“Although some aspects of the

transformation of atmospheric disturbances
Into tropical cyclones are relatively well
understood, the general problem of tropical
cyclogenesis remains, in large measure, one
of the great mysteries of the tropical
atmosphere.”

Kerry Emanuel, Divine Wind
2005



To summarize the distinctions of PREDICT from previous efforts, PREDICT will include:

New dynamical hypotheses comprising the marsupial theory of TC genesis

Nearly continuous observations using double-crewing of G-V

Expanded domain (latitude-longitude range and nearly full tropospheric observations)
Sampling a varted phenomenology of cyclogenesis precursors

[mproved and additional instrumentation on G-V (MTP, lidar, possibly X-band radar)
Simultaneous deployment of NOAA P-3s as part of [FEX

Possible partictpation of NASA with DC-8 instrument suite similar to that of AMMA

b. The formation of tropical depressions: science issues

The development of tropical depressions 1s inextricably linked to synoptic-scale disturbances that
come in a variety of forms. The most common in the Atlantic basin are African easterly waves. These
waves are well-studied over the eastern basin and Africa, with periods of 3-5 days and wavelengths of
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Figure 1. (a) schematic of synoptic-scale flow through an
casterly waves (dashed) with an embedded cluster of con-
vection in the wave trough. In (b} the cluster is shown to
contain mesoscale convective systems (MCSs) and ex-
reme convection (EC, black oval) within one of the
MCSs. From Gray (1998).

2000-3000 km (e.g. Reed et al. 1977). The
multi-scale nature of TC genesis within
tropical waves 1s well-known (though not
well-understoed). In the schematic of
(Gray 1998), two length scales are
illustrated, with a cluster deep, moist con-
vection confined to the trough of the synop-
tic-scale wave. Within these clusters are
individual mesoscale convective systems
(MCSs). The parent easterly waves, over
Africa and the far eastern Atlantic, are rela-
tively well studied, as in the classic GATE
campaign, and more recently in NASA
AMMA (2006). Sometimes a vigorous, dia-
batically activated wave emerging from Af-
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Double-crewed G-V, 1-15 Sept.

Figure 4. Schematic time-line for PREDICT.




2. PREDICT Hypotheses

In the Introduction, descriptions of genests from the synoptic-scale, mesoscale and convective-scale
perspectives were presented. Genesis 1s believed to be inherently a multi-scale process, but it is likely
that the roles of different scales can be evaluated and the following hypotheses can be tested to elucidate
their relative importance in genesis over the western Atlantic, with strong implications for genesis else-
where. The main hypothesis (H1) s the following:

HI: Tropical depression formation is greatly favored in the critical-layer region of the synoptic-scale,
pre-depression wave or subtropical disturbance.

This hypothests is the underlying tenet of the marsupial paradigm, or “marsupial/pouch theory™ of tropi-
cal cyclogenesis. The critical layer of the parent wave 1s a region of cyclonic rotation and weak deforma-
tion that provides a set of closed material contours inside of which air is repeatedly moistened by convec-
tion, protected from lateral intrusion of dry air and deformation by hortzontal or vertical shear, and
(thanks to its location near the critical level) able to keep pace with the parent wave until the dominant
vortex (a.k.a. proto-vortex) has strengthened into a self-maintaining entity. During this time the parent
wave 1s mamntained and possibly enhanced by diabatically amplified eddies within the wave (proto-
vortices on the mesoscale), a process favored in regions of small intrinsic phase speed. In regard to wave
maintenance it is important 1o note that we regard diabatic amplification as a key element of a feedback
loop, but logically as an effect, not cause, of the parent wave. In other words, the critical layer giving birth
to the proto-vortex is not simply an illusion caused by merger of such vortices that would have formed
anyway, but an essential element of the incipient wave which governs the particular location(s) of proto-
vortex development. Key to the marsupial paradigm is the existence of a hybrid diabatic Rossby
wave/vortex structure; a configuration that may be uniquely instrumental in TC genesis.

Hypothesis H1 naturally motivates four sub-hypotheses (H2-HS) that we also propose for testing:

H2: Despite the variety of pre-cursor disturbances, tropical cvelone formation proceeds through essen-
tially the same mesoscale and cloud processes.

H3: Genesis is a bottom-up process.

FH4: The primary effect of Saharan Air Layers is to inject dry air into the marsupial pouch of candidate
tropical disturbances.

H3: Despite potentially significant model ervors, poor initial conditions are the key factor in poor predic-
tions of genesis.



Outline
@ The problem

@ New observational insights

@ New perspectives on meso-a, 3 and y using
iIdealized and real-case WRF simulations

@ Upcoming Atlantic field experiment:
PREDICT 2010



Tropical Cyclogenesis from Easterly Waves

Michael T. Montgomery

Naval Postgraduate School, Monterey
&
Hurricane Research Division, Miami

Collaborators:Timothy J. Dunkerton!?2 & Zhuo Wang?

INorthWest Research Associates
°Naval Postgraduate School



TC Genesis

2-Stage Genesis: (Karyamudi and Pierce 2002)

Stage 1: preconditioning of the synoptic scale environment

Necessary conditions for genesis

1. Cyclonic absolute vorticity in the lower troposphere
2. Weak vertical wind shear

3. Warm SST

4. Moist unstable air

It is not well understood how a TC-scale vortex is transformed
from such an environment.

Stage 2: mesoscale organization and construction of the TC-
scale PV monolith (Vortical hot towers)

10



Absaclute Vertical Vorticity

t=10h 0 min Vortical Hot Tower
Route

In vorticity-rich
environment

2006, JAS. Expt. Al, “A veftical hot
tower route ...”




Consideration of horizontal scales exposes the
challenging nature of the problem
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1971-2003 Sep
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(a) Variance of 3-9 day band-pass filtered 850 hPa meridional velocity field (m?s-2) in September between
1971-2003; (b) Frequency of sum of band-pass filtered vorticity and long-term mean (Itm) vorticity exceeding
5x106 s'1 between 1971-2003. Dots represent the TC genesis locations as declared in the best track data



Marsupials are mammals in which
the female typically has a pouch
(called the marsupium, from which
the name 'Marsupial’ derives) in
which it rears its young through early
infancy.

Our hypothetical pathway for genesis
via tropical waves may be regarded
as a marsupial theory of tropical
cyclogenesis in which the “juvenile”
proto-vortex is carried along by the
“mother” wave until it is ready to be
“let go” as an independent & self-
sustaining vortex.

14



Hydrodynamically stable configuration
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Moist Critical Layer

@ Critical latitude/surface: locus where c=U or
equivalently where wave intrinsic frequency =0

@ Ciritical layer: A layer of finite width due to the
nonlinear interaction of the wave with its own critical
surface

@ Kelvin's Cat’s eye: Recirculating flow within CL
wherein air parcels are trapped and the fluid is
Isolated from its surroundings

—/)XV—\ .



Marsupial Paradigm: 3 New Hypotheses

@ H1: Wave breaking or roll-up of cyclonic vorticity near the critical surface in
the lower troposphere provides favorable environment for aggregation of
vorticity seedlings for TC formation.

@ H2: The wave critical layer is a region of closed circulation, where air is
repeatedly moistened by deep convection and also protected from dry air
entrainment to some extent.

@ H3: The parent wave is maintained and possibly enhanced by diabatically
amplified mesoscale vortices within the wave. (Heating is most effective when
Intrinsic frequency --> 0.)

The “baby” proto-vortex is carried along in the “pouch” (CL
cat’s eye) by the “mother” wave until it is strengthened into an
independent and self-sustaining vortex.

17



A Real World Example:
Formation of Felix (2007)
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Hovmoller Diagrams of Relative Vorticity
(Day -6 to Day 0)

Felix: Zeta (700 mb)
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Felix: TRMM and Translated
850 hPa Streamlines~Lagrangian Flow

TRMM and UV (850 mb; Moving)
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Low-frequency filter for (linear) wave critical latitude
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Tropical cyclogenesis in a tropical wave critical layer: easterly waves

T. J. Dunkerton'~, M. T. Montgomery”, and Z. Wang”
'NorthWest Research Associates, Bellevue WA, USA

*Naval Postgraduste School, Monterey CA, USA 53 out of 55 developing cases fit the
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Schematic of the “Pouch”
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Open Questions: What are the dynamics at meso-a, meso-3
and meso-y?

Seek preliminary answers by revisiting
Kurihara and Tuleya (1981, NOAA/GFDL)

® f-plane approximation (~18N)
® 3-grid nested run: 28 km-9 km- 3km

® Physics: Betts-Miller-Janjic scheme for the outer grid,
and cumulus convection is calculated explicitly at the
grid scale for the inner two grids. YSU PBL scheme,
Kessler (warm-rain) microphysics, RRTM longwave
radiation scheme and Dudhia shortwave radiation
scheme.



Basic Flow

Following Kurihara and Tuleya (1981); consistent with the observed
zonal flow during Phase Il of GATE over the west Atlantic region;

weakly barotropically unstable.
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(a) Day 1

-1 -08 -06 -04 -02 O 02 04 06 08 1

Meridional wind disturbance from dry model simulation following 27
KT81 at Day 1 and Day 30
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Figure 3 Time series of the surface maximum meridional wind (yellow; y-axis on the
right) and its natural logarithm (blue; y-axis on the left) from the dry WRF simulation.

The red straight line shows the linear growth rate.

(e-folding time scale =7.4d; 30d to attain finite amplitude coherent wave train from noise)



Initial Value Problem

(a) Initial UV and Zeta (X10~-5)
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Simulated
Intensity

® Black: single-grid,
coarse-resolution (28
km) simulation

® Green: high-resolution
(3 km) warm-rain
simulation (CTRL)

® Blue: high-resolution (3
km) simulation with ice
microphysics (WRF
single-moment, 6-class
microphysics scheme)

i (a) B50 hPa Max Wind Speed (m/s)

40
35 1
301
251
201
151
101

1010

1005 1

1000 1

995 1

890 1

9851

980 1

875

23

201

151

104

0 24 48 72 96

(b) Min SLP (hPa)

120

144

168

0 24 48 72 98

{(c) 850 hPa Max Zeta (107* g7!

120

144

168

120

144

168

192

216



Tracking of Gyre Centroid

It is difficult to track

vorticity or meridional
wind in the high-resolution

model simulation

Thus the propagation
speed of the wave is
defined based upon a
tracking of the pouch
centroid in the resting

frame of reference:
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Evolution of the Pouch (d01)
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Zeta (AOKT.3nests Run, 850 hPa)




Precip (AOKT.3nests Run, 850 hPa)
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Skew T- Log P Diagrams
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Time-Height Evolution of <Zeta>, <Div>, <RH> & < 6>

2°¥2° Box Average (d03)
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Vorticity Budget Following the Pouch Center

2°X2° Box Average (d03)

(a) 8n/8t (10 s7)_

The vorticity budget equation in
! the 1sobaric coordinates can be
written as

8_1]__V (V n) - V(wlzxd—v)+R

ot dp

where V’ is the wave-relative flow,
and the absolute vorticity is defined
as

v Ju

+ — - —
T n=/ dx o
(d) Residual (10~ ) _ y
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Time-Height Evolution of <Zeta>, <Div>, <RH> & < 0> with ice
microphysics
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Conclusions

® VHTs need a favorable environment to build TC
vortex, and genesis climatology suggests waves
play important role in TC formation in deep
tropics

® Diagnoses of observational data (ERA-40 and
TRMM 1998-2001) and num. model simulation
suggests the development of a critical layer in
the lower troposphere Is a necessary condition
for genesis, and the intersection of the critical
latitude and the trough axis provides sweet spot
for genesis



Conclusions contd.

Intermediate and high-resolution simulations with
Kurihara and Tuleya (1981) configuration support the
“Marsupial Paradigm”:

Genesis occurs near the intersection of the trough axis and
the critical latitude (center of the pouch).

Air within the pouch is repeatedly moistened by deep
convection and protected from dry air entrainment to
some extent. Convective heating dominates stratiform
heating.

Middle level RH and near-surface vorticity increase
concurrently. Middle level RH not a “trigger” to
tropical cyclogenesis in wave-to- TC sequence.
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Marsupial slogans

“Ride the wave”

— A wave-centric point of view is preferred over the Earth frame for
identification of Lagrangian boundaries.

“Go with the flow”

— Focus on critical surface / critical layer as locus of wave-mean flow
interaction & TC genesis.

“Divide and conguer”

— Identify manifolds of 2D horizontal flow on stratification isosurfaces,
critical points = separatrix, attracting & repelling node, center, etc.

“Roadkill on the Rossby wave highway”

— Vorticity debris is everywhere, but mostly irrelevant; focus instead on
gyre-pouch recirculation that is deep, local, rapid & persistent.

“It’'s a nasty world out there”
— Tropical atmosphere is generally hostile to tropical cyclogenesis.

— Jule Charney / Jim Holton tropical “barotropic” scaling, independence of
adjacent levels, Jim McWilliams “stratified turbulence”
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End of Presentation

Thank you!
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