NASA GRIP Aircraft

Genesis and Rapid Intensification Processes

GRIP

August - September 2010

NASA Hurricane Science Research Team

California

Florida
NASA DC-8
DC-8 Communications

REVEAL - Research Environment for Vehicle-Embedded Analysis on Linux

- Real-time aircraft position and data plotted on Google Earth
- X-Chat capability with science team members

Instrument Inter-communications

- Gigabit ethernet data system
- High Res. LCD displays

IRIDIUM and INMARSAT Satcom

- 9600 bps IRIDIUM
- 432kbps INMARSAT

Digital forward and Nadir video system
GRIP DC-8 Payload

Dropsondes
(Vertical Profiles of Temp, Press, Humidity and Winds)

DAWN
Doppler Aerosol Wind Lidar
(Vertical Profiles of Vectored Horizontal Winds)

MMS
Meteorological Measurement System
(Insitu Press, Temp, 3D Winds and Turbulence)

CAPS, CVI, PIP
(Cloud Particle Size distributions, Precip Rate, Rain & Ice water content)

LASE
Lidar Atmospheric Sensing Experiment
(H2Ov, Aerosol profiles and Cloud distributions)

APR-2
Airborne Precipitation Radar Dual Frequency
(Vertical Structure Rain Reflectivity and Cross Winds)
Elements of Coherent (Heterodyne) Doppler Lidar

Pulsed Transmitter Laser
CW Injection Laser

Receiver Optics
CW Local Oscillator Laser*
Optical Signal Detector

Receiver Electronics
Data Acquisition, Processing, and Display

Optical Transmit - Receive Switch
Beam Expanding Telescope
Scanner
Optical Wedge

Aerosol Particles or Clouds

DAWN Transceiver (Transmitter + Receiver)
250 mJ/pulse, 10 pulses/sec.
5.9” x 11.6” x 26.5”, 75 lbs.
(no telescope or scanner)

Optical Transmit - Receive Switch

Predicted DC-8 Performance
• Horizontal vector wind profile from 300 m below DC-8 to ground, thick clouds permitting, ~ 3 min. integration
• Line-of-sight velocity precision better than 1 m/s
• Line-of-sight velocity bias less than 0.1 m/s
• Deliver LOS and/or horizontal wind profiles
• Multiple integration times permitted on same data
• Multiple vertical resolutions permitted on same data
• On board real-time displays
• Archive all data

Tilted Beam - 45 deg elev.
2 Azimuths Horiz. Wind Speed
4 – 45 m/s

Horizontal Wind Direction
220 – 360 deg

Vertical Wind Speed
-3 - +3 m/s

Vertical Signal Power
~ 35 dB

March 11-12, 2009, unattended autonomous operation, ~ 14 hrs, 3-minute shot integration times, 5 Hz
NASA Global Hawk 10/23/09
GHOC Flight Operations Room
GH UAS Communications
GRIP GH Payload

HAMSAR
High Altitude MMIC Sounding Radiometer
(Temp, H2Ov, Cloud liquid & ice distribution)

HIWRAP
High Altitude Imaging Wind and Rain Profiler
(Horizontal wind vectors and ocean surface winds)

LIP
Lightning Instrument Package
(Lightning and Electrical Storm observation)

Driftsondes
High Altitude Lightweight Dropsonde
(Vertical profiles of temp, humidity, pressure & winds)
HAMSIR Microwave Sounder on Global Hawk
Bjorn Lambrigtsen, Shannon Brown - JPL

Thermodynamic structure
- T(z), q(z), L(z) - clear & cloudy
- Rain rate, IWP (experimental)
- 1 km V x 2 km H in 40-km swath
- 25 channels: 50, 118 and 183 GHz

Multiple platforms
- ER-2 (CAMEX-4, TCSP)
- DC-8 (NAMMA)
- Global Hawk (ready late 2009)

Convective structure
- Radar-like reflectivity
- 1 km vert.res/40 km swath
- Conv.intens., precip(z), ice(z)

3D reflectivity, Hurricane Emily (2005)
High-Altitude Imaging Wind and Rain Profiler (HIWRAP)

NASA Technology Development
- Low power solid-state transmitter and pulse-compression
- Single aperture antenna for two beams (incidence 30°, 40°) and two frequencies (14, 35 GHz), conical scan
- High altitude, power efficient real-time FPGA-based digital receiver and processor
- GPM frequencies

Hurricane Measurements
- *3D winds (grid point retrieval) and reflectivity*
- *Ocean scatterometry (QuikScat-like measurements)*

![HIWRAP Concept](image)

![Global Hawk Radar Bay](image)
Pre-GRIP

April/May 2010
 • Two test flights; 1 local in DFRC range and 1 24hr flight.

Test of Certificate of Authorization (COA) and Flight Information Regions (FIR) Process
 • GH flight to the Gulf of Mexico, possibly Atlantic

Instruments on board
 • HAMSR
 • HIWRAP
 • GH Wx Instruments
 • LIP?
GH UAS Wx Hazard Mods

Install HD Camera in Aircraft Nose
 • Low-Light / Visual / IR

Install Wx Severe Storm Instruments
 • Storm-scope for lightening detection
 • Data Link NexRad?

Install Turbulence Package
 • Turbulence Sensor w/ Display
GRIP DC-8 Range from FLL
Loiter Capability from DFRC

1500 nm transit flight to Gulf of Mexico

15 hr

20 hr

10 hr
East Pac Loiter Capability
GRIP Aircraft Platforms

Questions?