The Fine Structure of the Entrainment Interfacial Layer and the Role of Wind Shear on Entrainment Mixing

Q. Wang Naval Postgraduate School, Monterey CA

Variations of the Costal Cloud-topped Boundary Layer ---Observations from DECS (1999)

From: (36.70N, 122.13W) To: (36.70N, 124.36W) Start: 15:39:29UTC End: 17:38:20UTC Water vapor (g kg⁻¹)

From: (36.70N, 122.13W) To: (36.70N, 124.36W) Start: 15:39:29UTC End: 17:38:20UTC Wind direction (deg)

Variations of the Costal Cloud-topped Boundary Layer ---Observations from FIRE (1987)

Flt 6

Variations of the Costal Cloud-topped Boundary Layer ---Observations from FIRE (1987)

1.5

0.5

-0.5

-1.5

-2

Figure 1. Schematic diagram showing the used in the composited profiles.

(2

(4)

(1)

Traditional view of cloud top structure: (Lenschow et al. 2000)

Figure 6. Same as Figure 5, for temperature and ozone.

Observed Vertical Variation from Aircraft Sounding (ASTEX)

The traditional view

Observed Vertical Variation from Aircraft Sounding The not-so-traditional view

Observed Vertical Variation from Aircraft Sounding The not-so-traditional view

Observed Vertical Variation from Aircraft Sounding

The not-so-traditional view

Mixing-line Analysis For the Interfacial Layer

in the mixing process.

What is the interfacial layer composed of?

Mixing Line Analyses

Turbulence in the Interfacial Layer

RF05 Sounding sleg12

Turbulence in the Interfacial Layer

RF06 Sounding sleg27

Turbulence in the Interfacial Layer

RF01 Sounding sleg8

Hypothesis

Entrainment drying of the upper cloud layer:

t1

t2

NPS Focus in POST

How does the wind shear at the cloud-top change the entrainment physics in the stratocumulus-topped boundary layer?

Optimal Flight Pattern for Shear Entrainment Study

- Combined deep and shallow sawtooth slant path soundings to capture: a) the entire BL vertical structure;
 b) the variation of the mean and perturbation in the entrainment zone.
- 2) Horizontal legs through the entrainment zone.

Figure 1. Schematic diagram showing the categories of segments referenced to cloud top that are used in the composited profiles.

- 3) Slow slant path ascent/descend through the BL: attempt to get turbulent statistics in case there are not enough time for stacks of horizontal legs.
- 4) Horizontal legs at the solid cloud top (red line) to capture in-cloud turbulence and entrainment events

