

POST DATA MANAGEMENT PLANNING

José Meitín and Steve Williams

NCAR Earth Observing Laboratory

Boulder, Colorado

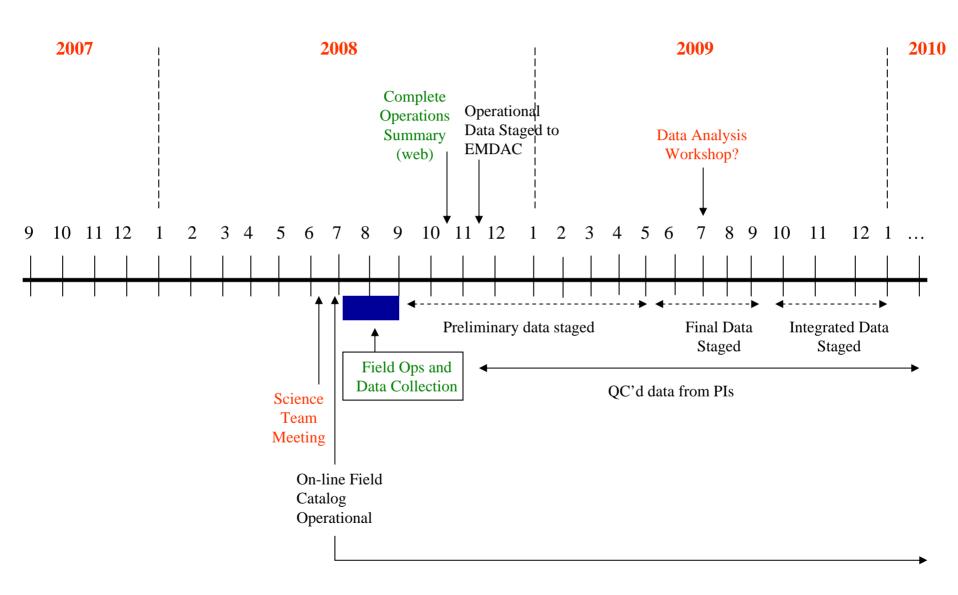
POST Science Team Meeting

Marina, CA

12-13 June 2008

EOL Data Management Philosophy

- Early involvement in project planning
- Involvement with PIs to develop data management strategy (e.g., plan, policy, format, special collection and processing, data integration)
- Consistent implementation of strategy for lifetime of project and beyond (stewardship – data access and publications!)
- Reliable and efficient archive and distribution system
- Easy and efficient access to datasets and products by the broader community including stakeholders, educators and students



Project Data Management Considerations

- Develop Data Management Plan
- Data Types
- Data Formats and Documentation
- Data Collection
- Real-time Data Requirements
- Data Quality Control
- Data Archival
- Data Distribution
- Coordination with other Programs

POST Data Management Timeline

ACCESS TO DATA

- All quality controlled data to be submitted to the POST data archive as soon as possible – 6 month maximum from the end of the Field Phase.
- For one year following the six month submission deadline, POST PIs will have exclusive access to this data. All PIs have equal access to all data.
- After one year, all research data will become publicly available. Operational data available after 3 months.
- Data should normally be in ASCII or NetCDF format. If in a special format, software (and documentation) for reading the data must be submitted to the archive along with the data set.
- Data and software to be well documented (metadata).

RICO DATASET METADATA

TITLE: This should match the data set name AUTHOR(S):

Name(s) of PI and all co-PIs

Complete mailing address, telephone/facsimile Nos.,

E-mail address of Pls, and WWW address (if applicable)

Similar contact information for data questions (if different than above)

1.0 DATA SET OVERVIEW:

Introduction or abstract

Time period covered by the data

Physical location (including lat/lon/elev) of the measurement or platform

Data source if applicable (e.g. for operational data include agency)

Any World Wide Web address references (i.e. additional documentation such as Project WWW site)

2.0 INSTRUMENT DESCRIPTION:

Brief text (i.e. 1-2 paragraphs) describing the instrument with references

Figures (or links), if applicable

Table of specifications (i.e. accuracy, precision, frequency, resolution, etc.)

3.0 DATA COLLECTION AND PROCESSING:

Description of data collection

Description of derived parameters and processing techniques used

Description of quality control procedures

Data intercomparisons, if applicable

4.0 DATA FORMAT:

Data file structure and file naming conventions (e.g. column delimited ASCII, NetCDF, GIF, JPEG, etc.)

Data format and layout (i.e. description of header/data records, sample records)

List of parameters with units, sampling intervals, frequency, range

Data version number and date

Description of flags, codes used in the data, and definitions (i.e. good, questionable, missing, estimated, etc.)

5.0 DATA REMARKS:

PI's assessment of the data (i.e. disclaimers, instrument problems, quality issues, etc.)

Missing data periods

Software compatibility (i.e. list of existing software to view/manipulate the data)

6.0 REFERENCES:

List of documents cited in this data set description

PI RESPONSIBILITIES

- To carefully quality control their data to ensure maximum possible data integrity and value.
- To thoroughly document their data, including:
 - Instrument specifications;
 - Errors;
 - Problems with data (gaps and other problems);
 - Limitations.
- To provide full contact details.
- To make the data available for inclusion in the POST archive within 6 months of the field phase.

USE OF DATA

- The PIs who gathered the data should be informed of the intent to use the data and approve (if necessary).
- It is strongly encouraged that PIs responsible for acquisition of data be invited to become collaborators and co-authors on any projects/publications/presentations. If the contribution of the data product is significant to the publication, the PIs responsible for generating a measurement or a data product should be offered the right of co-authorship.
- In all circumstances, the PIs responsible for acquisition of data should be acknowledged appropriately.

USE OF DATA

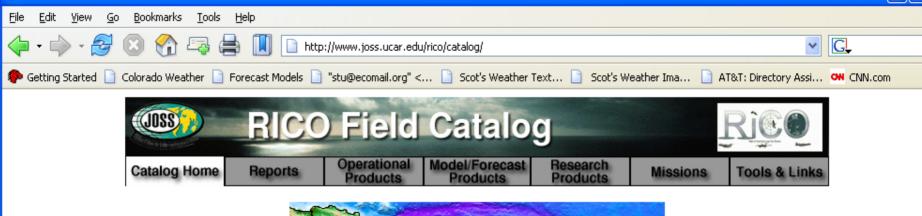
- Suggested acknowledgement: The xxxx data was gathered as part of the The Physics Of Stratocumulus Tops (POST). The primary sponsor of POST was the US National Science Foundation. The acquisition of the xxxx data was carried out by Dr. Yyyyy using the zzzz instrument and was funded by ????
- Acknowledge that data was obtained from the POST Data Archive at NCAR/EOL.

EOL DATA MANAGEMENT TOOLS

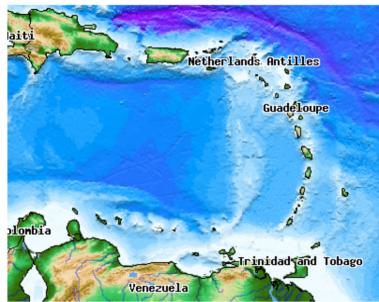
EOL Field Catalog

In-field tool to ingest and display operational and preliminary research data and project documentation for making real-time decisions and evaluating project progress

Features:


- Daily Mission Reports
- Operations Summary
- Facility Status Reports
- Data Analysis Products
- Authoring Tools
- Web-based access

EOL Data System (EMDAC)

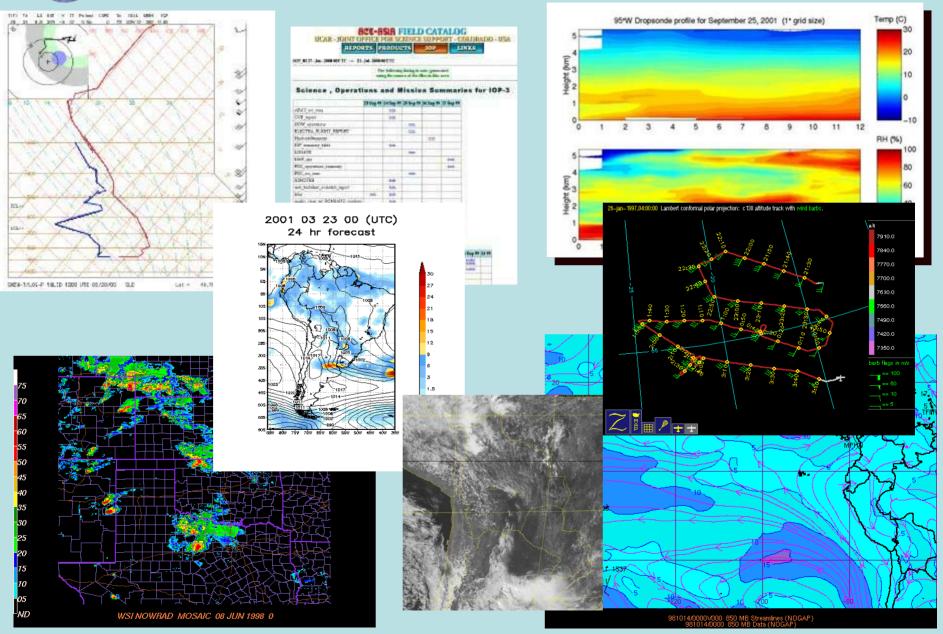

Primary means for all project scientists and researchers to browse and retrieve data from any EOL-supported projects

Features:

- Long-term field project data archival and distribution
- Interactive data browsing, subsetting, and format translation
- Web-based access
- Value-added datasets
- Data documentation

>>

Project Location: Antigua and Barbuda Project Dates: 17 November 2004 through 24 January 2005

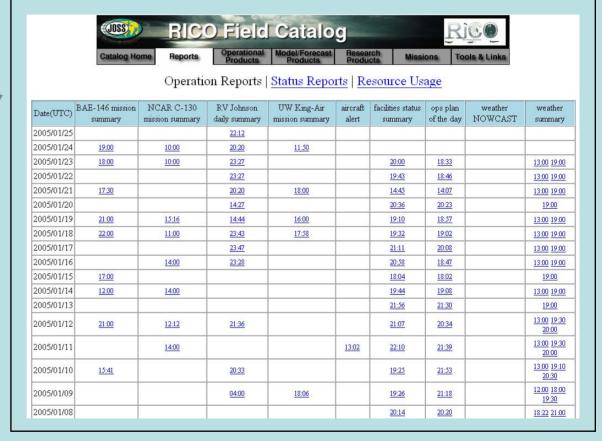


Copyright © UCAR/JOSS 1994-2004. All Rights Reserved

🍪 JOSS/RICO FIELD CATALOG - Home - Mozilla Firefox

FIELD CATALOG SAMPLE PRODUCTS

Field Documentation


Operations Summary

Instrument / Facility
Status

Forecast Briefing

Mission Summary

Scientist Summary

RICO Facilities Status Summary Report

Date of report(UTC): 2005/01/15 18:04 **Author of report:** Greg Stossmeister **Submitted at(UTC):** 2005/01/15 18:08

OVERVIEW:

Land radars operational

Barbuda soundings taken 4/day

BAE-146 and UW King-Air flying today. Hard-down day for the NCAR C-130.

R/V Johnson on port call in Antigua today. Antigua air sampling site fully operational.

FACILITY/PROJECT STATUS

= up; = provisional; = down; = no report

1. NCAR C-130 Comment: See also detailed instrument status report

a. Air Chemistry Comment:
b. Microphysics Comment:

c. SABL Comment: replacement parts shipped

d. Dropsondes Comment:

e. Navigation, State Parameters Comment: Lyman alpha performing better

f. Data System Comment: g. Sat. Communications Comment:

2. UW King Air Comment:

a. Air Chemistry Comment:
b. Microphysics Comment:

Cloud Radar Commant: Marri norte due in nort maele

Mission Scientist Report, RICO, RF15 January 16th, 2005

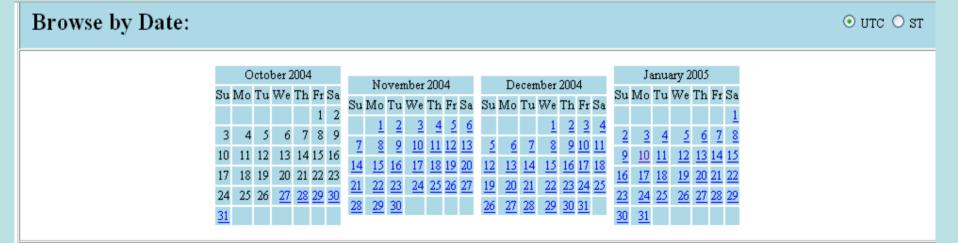
C130Q Flight Scientist/Observer: Stevens/Ochs

Figure 1: Images showing cloud field during flight.

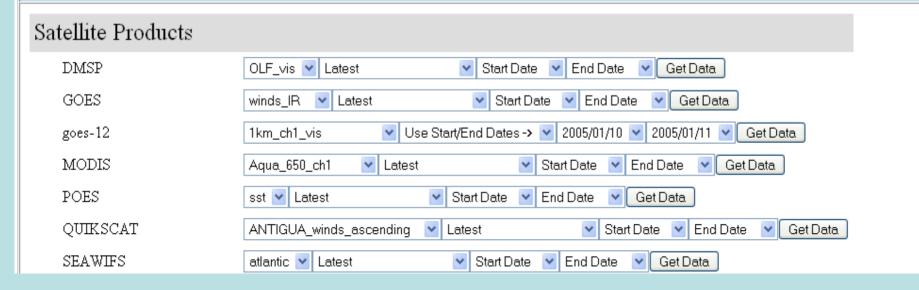
General cloud characteristics: The clouds sampled during the line segment of the flight were initially thought to be in the outflow of a region of more organized, deeper convection. Our targets consisted of several convective cells which grew substantially during the period of flight operations, eventually reaching depths of 15000°. Based on the radar imagery (Fig. 3), the "line" might be better interpreted as the stronger, eastern, flank of meso-cell of approximately 60 km in diameter. Later we sampled another ring, or rings of growing convection with tops nearer 6000 ft, sampling many rainshafts, and convective cells at a variety of levels, these were more apparently annular while flying. Both the deeper cells sampled early and the later cells sampled late were not unlike other forms of convection encountered during RICO. Cloud droplet concentrations during the flight were low, typically around $100 \, \mathrm{cm}^{-3}$ or a bit less. The latter cells provided many opportunities to work rainshafts near the radar, thus providing calibration for Z-R relationships during RICO.

RICO Operations Plan of the Day Form

For use by authorized users only please.


PRIMARY MISSION:

Date of report(UTC): year: 2005 v month: 02 v day: 05 v hour: 22 v min: 03													
Author of report: Jim Moore Password:													
Preserve the format of the text being entered below?: no 💌													
OPERATIONS SUMMARY:													
SCIENTIFIC OBJECTIVE(S):													
MISSION PLANS:													



Browse by Operational Products:

Operational Products Display

Satellite

Surface

Model Analysis

Upper-Air Soundings

Buoy Data

Marine Products

QUIKSCAT																									
ANTIGUA_winds_ascending																		1700							
ANTIGUA_winds_descending	5					0500																			
EAST_winds_ascending																1500									
EAST_winds_descending				0300																					
goes-12 (NESDIS GOES Soundings)																									
1km_ch1_vis											1045	1115 1145	1215 1245	1315 1345	1415 1445	1515 1525 1545 1555	1615 1625 1645 1655	1715 1725 1742 1745	1815 1825 1845 1855	1915 1925 1945 1955	2015 2025 2045	2115			e o
4km_ch1_vis											1045	1115 1145	1215 1245	1315 1345	1415 1445	1515 1545	1615 1645	1715 1745	1815 1845	1915 1945	2015 2045	2115			e o
4km_ch2-ch4	0015 0045	0115 0145	0215 0245	0315 0345	0415 0445	0515 0545	0615 0645	0715 0745	0815 0845	0915 0945	1015 1045	1115 1145	1215 1245	1315 1345	1415 1445	1515 1545	1615 1645	1715 1745	1815 1845	1915 1945	2015 2045	2115 2145	2215 2245	2315 2345	9.0
4km_ch3_water_vapor	0015	0115		0315	0415	0515	0615	0715	0815	0915	1015	1115	1215	1315	1415	1515	1615	1715	1815	1915	2015	2115	2215	2315	20
4km_ch4_thermal-IR	0015 0045	0115 0145	0215 0245	0315 0345	0415 0445	0515 0545	0615 0645	0715 0745	0815 0845	0915 0945	1015 1045	1115 1145	1215 1245	1315 1345	1415 1445	1515 1545	1615 1645	1715 1745	1815 1845	1915 1945	2015 2045	2115 2145	2215 2245	2315 2345	20
8km_ch1_vis											1045	1115 1145			1415	1515 1545	1615 1645	1715	1815 1845	1915 1945	2015	2115 2145	2215		20
8km_ch3_water_vapor			0215 0245												1415 1445	1515 1545	1615 1645	1715 1745	1815 1845	1915 1945	2015 2045	2115 2145	2215 2245	2315 2345	20
8km_ch4_thermal-IR			0215 0245																					2315 2345	0 C
Product	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	
Times(UTC) 10 Jan 2005																									

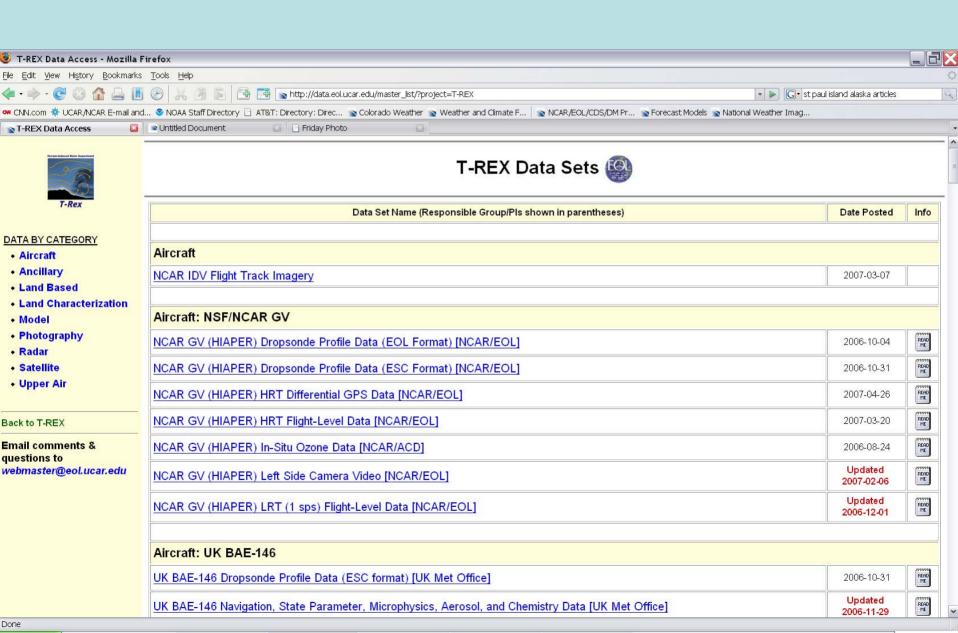
Surface Products

Product											10	Jai	ı 20	05											
		01 @	02 •	03 •		05 @	06 •	07 @	08 •	09 •		11 (a)	12 •		14 •	15	16 •		18 •	19 •	20 •	21 •		23	2
GTS_Station_Plot																									
Caribbean	0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	20
Regional	0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	20
NTAS_Buoy																									
time_series_rad_rh	0000						0600						1200						1800						20
time_series_temp_wind	0000						0600						1200						1800						200
TPC_Surface_Analys	is																								
atlantic	0000						0600						1200						1800						20

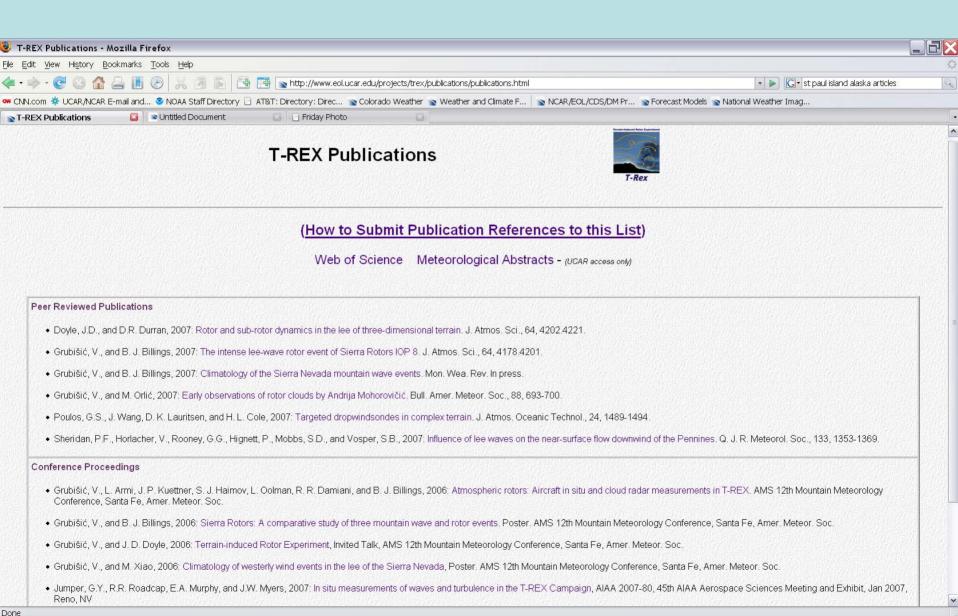
RAMS Forecast Products

Forecast	11 Jan 2005 00 02 04 06 08 10 12 14 16 18 20 22												12 Jan 2005													
Times(UTC)	12	14	16	18	20	22	00	02	04	06	08	10	12	14	16	18	20	22	00	02	04	06	08	10	12	88
RAMS_grid3 - Analysis and Forecast from 2005/01/10 12:00 UTC (RAMS RICO FORECASTS)																										
300mb_RH	00hr	02hr	04hr	06hr	08hr	10hr	12hr	14hr	16hr	18hr	20hr	22hr	24hr	26hr	28hr	30hr	32hr	34hr	36hr	38hr	40hr	42hr	44hr	46hr	48hr	20
300mb_speed	00hr	02hr	04hr	06hr	08hr	10hr	12hr	14hr	16hr	18hr	20hr	22hr	24hr	26hr	28hr	30hr	32hr	34hr	36hr	38hr	40hr	42hr	44hr	46hr	48hr	20
300mb_temp	00hr	02hr	04hr	06hr	08hr	10hr	12hr	14hr	16hr	18hr	20hr	22hr	24hr	26hr	28hr	30hr	32hr	34hr	36hr	38hr	40hr	42hr	44hr	46hr	48hr	20
500mb_RH	00hr	02hr	04hr	06hr	08hr	10hr	12hr	14hr	16hr	18hr	20hr	22hr	24hr	26hr	28hr	30hr	32hr	34hr	36hr	38hr	40hr	42hr	44hr	46hr	48hr	20
500mb_speed	00hr	02hr	04hr	06hr	08hr	10hr	12hr	14hr	16hr	18hr	20hr	22hr	24hr	26hr	28hr	30hr	32hr	34hr	36hr	38hr	40hr	42hr	44hr	46hr	48hr	20
500mb_temp	00hr	02hr	04hr	06hr	08hr	10hr	12hr	14hr	16hr	18hr	20hr	22hr	24hr	26hr	28hr	30hr	32hr	34hr	36hr	38hr	40hr	42hr	44hr	46hr	48hr	20 RES
700mb_RH	00hr	02hr	04hr	06hr	08hr	10hr	12hr	14hr	16hr	18hr	20hr	22hr	24hr	26hr	28hr	30hr	32hr	34hr	36hr	38hr	40hr	42hr	44hr	46hr	48hr	9.0 PEE
700mb_speed	00hr	02hr	04hr	06hr	08hr	10hr	12hr	14hr	16hr	18hr	20hr	22hr	24hr	26hr	28hr	30hr	32hr	34hr	36hr	38hr	40hr	42hr	44hr	46hr	48hr	9.0 PEE
700mb_temp	00hr	02hr	04hr	06hr	08hr	10hr	12hr	14hr	16hr	18hr	20hr	22hr	24hr	26hr	28hr	30hr	32hr	34hr	36hr	38hr	40hr	42hr	44hr	46hr	48hr	20
850mb_RH	00hr	02hr	04hr	06hr	08hr	10hr	12hr	14hr	16hr	18hr	20hr	22hr	24hr	26hr	28hr	30hr	32hr	34hr	36hr	38hr	40hr	42hr	44hr	46hr	48hr	20
850mb_speed	00hr	02hr	04hr	06hr	08hr	10hr	12hr	14hr	16hr	18hr	20hr	22hr	24hr	26hr	28hr	30hr	32hr	34hr	36hr	38hr	40hr	42hr	44hr	46hr	48hr	20
850mb_temp	00hr	02hr	04hr	06hr	08hr	10hr	12hr	14hr	16hr	18hr	20hr	22hr	24hr	26hr	28hr	30hr	32hr	34hr	36hr	38hr	40hr	42hr	44hr	46hr	48hr	20
acc_tot_precip	00hr	02hr	04hr	06hr	08hr	10hr	12hr	14hr	16hr	18hr	20hr	22hr	24hr	26hr	28hr	30hr	32hr	34hr	36hr	38hr	40hr	42hr	44hr	46hr	48hr	9.0 PEE
mixed_layer_height	00hr	02hr	04hr	06hr	08hr	10hr	12hr	14hr	16hr	18hr	20hr	22hr	24hr	26hr	28hr	30hr	32hr	34hr	36hr	38hr	40hr	42hr	44hr	46hr	48hr	9.0 PEE
precip_rate	00hr	02hr	04hr	06hr	08hr	10hr	12hr	14hr	16hr	18hr	20hr	22hr	24hr	26hr	28hr	30hr	32hr	34hr	36hr	38hr	40hr	42hr	44hr	46hr	48hr	9.0 PEE
sea_level_press	00hr	02hr	04hr	06hr	08hr	10hr	12hr	14hr	16hr	18hr	20hr	22hr	24hr	26hr	28hr	30hr	32hr	34hr	36hr	38hr	40hr	42hr	44hr	46hr	48hr	20
sfc_dew	00hr	02hr	04hr	06hr	08hr	10hr	12hr	14hr	16hr	18hr	20hr	22hr	24hr	26hr	28hr	30hr	32hr	34hr	36hr	38hr	40hr	42hr	44hr	46hr	48hr	20
sfc_temp	00hr	02hr	04hr	06hr	08hr	10hr	12hr	14hr	16hr	18hr	20hr	22hr	24hr	26hr	28hr	30hr	32hr	34hr	36hr	38hr	40hr	42hr	44hr	46hr	48hr	0 0 NES
sfc_wind	00hr	02hr	04hr	06hr	08hr	10hr	12hr	14hr	16hr	18hr	20hr	22hr	24hr	26hr	28hr	30hr	32hr	34hr	36hr	38hr	40hr	42hr	44hr	46hr	48hr	9 0 PES
vert_integ_condensate	00hr	02hr	04hr	06hr	08hr	10hr	12hr	14hr	16hr	18hr	20hr	22hr	24hr	26hr	28hr	30hr	32hr	34hr	36hr	38hr	40hr	42hr	44hr	46hr	48hr	9 0 PEE
Forecast	12	14	16	18	20	22	00	02	04	06	08	10	12	14	16	18	20	22	00	02	04	06	08	10	12	
Times(UTC)		10	Jai	ı 20	05						11	Jai	ւ 20	05						1	2 J	an í	200	5		

Browse by Research Products:



RICO Mission Table


Note: FF and RF refer to NCAR C-130 datafile name. B refers to BAE-146 data, and MMDD (2-digit month, 2-digit day) refer to Wyoming datafile name with a and b used when multiple flights occur in a given day.

Number	Date	Mission	Begin (UTC)	End (UTC)	Location/Mission Map	Catalog Products	Facilities	Notes
17 RF-12 UW-20050111	11 Jan	Trade Cumulus Study <u>C-130 Summary</u>	1400	2200	NE of Barbuda in S- and k- band radar coverage, near the ship, and SE of S-Polka.	Operational Research Model	UW King-Air NCAR C-130 R/V Seward Johnson S-Polka Barbuda Ground Site Antigua Air sampling site GOES super-rapid scan	Excellent case study of small and vigorous trade cumulus. King-Air and C-130 flew in different radar sectors to study clouds near the ship and SE of the radar. Excellent intercomparison with the ship by the C-130.
18 RF-13 B073 UW-20050112	12 Jan	Trade Cumulus Clusters with Towers <u>C-130 Summary</u> BAE-146 Summary	1400	2200	NE of Barbuda in S- and k-band radar coverage, generally E and SE of the ship.	Operational Research Model	UW King-Air BAE-146 NCAR C-130 R/V Seward Johnson S-Polka Barbuda Ground Site Antigua Air sampling site GOES super-rapid scan	Coordinated 3 aircraft study of cumulus clusters with towers. BAE-146 overflight of ship.
19 RF-14 B074 UW-20050114	14 Jan	Trade Cumulus Study <u>C-130 Summary</u> <u>BAE-146 Summary</u>	1500	2300	NE of Barbuda in S- and k- band radar coverage, near the ship.	Operational Research Model	UW King-Air BAE-146 NCAR C-130 R/V Seward Johnson S-Polka Barbuda Ground Site Antigua Air sampling site GOES super-rapid scan	Three aircraft coordinated measurements of widespread shallow cumulus.

PROJECT MASTER LIST OF DATASETS

PROJECT PUBLICATION LIST AND ARCHIVE

