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The smallest scale of turbulence is the Kolmogorov scale:

η ≡ (ν3/ε)1/4

For ε = 10−2 m2 s−3 and ν = 1.5× 10−5 m2 s−1, η = 0.7 mm.



Aircraft Measurements of Liquid Water Content



2 Model Description

In this section we describe ODTLES, an approach for extending the one-dimensional turbulence

model of Kerstein [6] to treat turbulent flow in three-dimensional domains. ODTLES can also be

thought of as a novel LES approach, and we will show how large-scale 3D turbulent motions are

captured by the LES aspects of the model but are strongly coupled to the small-scale turbulent

motions generated by the ODT part of the model.

Before continuing we also note that ODT might be combined with LES in at least two different

ways. One option is to start with the LES equations (derived by spatially averaging the NS equa-

tions), and seek a method for using ODT as a subgrid closure model for these equations. This can

be thought of as a top-down approach, and is denoted LES/ODT. A second option is to begin with

the ODT equations, and then add additional terms so that mutually orthogonal ODT domains might

be coupled together and 3D LES modeling constraints enforced. The ODTLES model described

here follows the latter bottom-up approach.

Figure 1. Illustrative geometry of the ODT and LES subdomains

2.1 Geometry and Numerical Discretization

In ODTLES we discretize our domain of interest in two distinct but interdependent ways. The first

is by a standard set of rectangular control volumes. The second is formed by embedding three,

mutually orthogonal ODT domain arrays within the coarser 3D mesh. This is illustrated in Figure

1 for a simple box-shaped region. Here we see that the overall domain is subdivided into N3
les

uniform LES control volumes, where Nles = 3 is the number of LES-scale subdivisions in each
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• The premise of LES is that only the large 
eddies need to be resolved.

• Why resolve any finer scales? Why resolve 
the finest scales?

• LES is appropriate if the important small-
scale processes can be parameterized. 

• Many cloud processes are subgrid-scale, yet 
can’t (yet) be adequately parameterized.

LES Limitations



• SGS finite-rate mixing of clear and cloudy 
air slows evaporative cooling and affects 
buoyancy and cloud dynamics.

• SGS variability of water vapor due to 
entrainment and mixing broadens droplet 
size distribution (DSD) and increases 
droplet collision rates. 

• SGS turbulence increases droplet collision 
rates.

Subgrid-scale Cloud Processes







LES of passive scalar in a convective boundary layer
(grid size = 20 m)



Mixing Time Scale

τ =

(
d2

ε

)1/3

,

d is entrained blob size, ε is dissipation rate of
turbulence kinetic energy.

For a cumulus cloud, U ∼ 2 m/s, L ∼ 1000 m, so
ε ∼ U3/L = 10−2 m2/s3. For d = 100 m, τ ∼ 100 s.

Classic (instant mixing) parcel model is recovered
when

• Entrained blob size, d→ 0

• Turbulence intensity, ε→∞



“Stirred”

Buoyancy vs Mixture Fraction

“Mixed”
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Figure 4.10: Radius histories of 30 droplets for f = 0.1 and RHe = 0.219.

To summarize, drier entrained air requires more evaporation to regain saturation and

with that the size distribution is broadened to smaller sizes. The entrainment fraction

has a major effect on the distribution.

Still, we have to ask why is the droplet spectrum broader for these cases than for

the control case? It is obvious that it depends on the mixing process which is also

determined by the mixing and evaporation time scales. For this we will take a closer

look in a later section.

4.2.2 The Effects of Different Dissipation Rates

For a given entrained blob size, the turbulent dissipation rate determines the mixing

rate of the cloudy and clear air segments. The purpose of this section is to examine

the calculated cloud droplet spectral properties as functions of varying dissipation rates

only. The different dissipation rates for this are 10−2(control), 5 x 10−3, 10−4, and

10−6m2s−3. The run for ε = 10−4m2s−3 was conducted with a higher frequency of the
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Figure 4.6: Standard deviation of the droplet radii just before entrainment until homog-
enization for entrainment fraction f = 0.2 for the control case.

Again, for each case two different random number seeds were computed. The results

are qualitatively similar for cases without sedimentation to the ones with sedimentation.

The spectral shape is just slightly wider when sedimentation of drops is present than the

absence of sedimentation.

During the time it takes for mixing to the fine-scale, some of the droplets will sed-

iment into the subsaturated air. The droplets that do so will evaporate partly and thus

modify their immediate environment.

To summarize, entrainment (f ) and mixing broadens the droplet size distribution.

With higher entrained fractions the broadening increases towards smaller radius sizes

due to more droplets being affected by the subsaturated air and evaporate partly. Un-

til entrained fraction 0.2, the domain is still large enough so that some of the largest

droplets do not evaporate at all. With an entrained fraction of 0.8, all droplets evapo-

rated totally. The mixing process is faster than the evaporation process. Most variations

An unsaturated blob is entrained
individual droplet radii width of droplet size distribution



• Processes that may contribute to large droplet 
production

• Entrainment and mixing of unsaturated air

• Droplet clustering due to turbulence

• Giant aerosols

Large droplets are needed to initiate 
collision-coalescence growth



1!c"# suggests that the regions with little or no particles are
on the order of 1/10 the box length, making the size of these

regions on the order of 10$.

III. MODELING CONSIDERATIONS

A. Radial distribution function

Consider a canonical ensemble of systems, each of vol-

ume V , containing N indistinguishable particles of diameter,

%, and density, &p . For such an ensemble, the joint probabil-
ity that each of the N particles lie within volumes dx1 cen-

tered at x1 ,. . . , through dxN centered at xN is defined as

P !N "!x1 ,. . . ,xN"dx1 .. .dxN , !7"

where the standard normalization applies, i.e.,

!
V

¯!
V

P !N "!x1 ,. . . ,xN"dx1¯dxN!1. !8"

The two-particle distribution function is then obtained by

integrating out the dependence on the remaining particles

P !2 "!x1 ,x2"'!
V

¯!
V

P !N "!x1 ,. . . ,xN"dx3¯dxN . !9"

The two-particle radial distribution function is then defined

as32,33

g!x1 ,x2"!
N!N"1 "

n2
P !2 "!x1 ,x2", !10"

where n'N/V . For a statistically homogeneous and isotro-

pic volume, particle positions can be expressed in terms of a

relative separation distance, r'"x1"x2", and P (2)(x1 ,x2) re-
duces to P (2)(r)/V to give the working definition of g(r)

used in this study

g!r "!
N!N"1 "

n2V
P !2 "!r ". !11"

As the rdf is near unity for a uniformly distributed system, it

is convenient to define a residual rdf !rrdf" as

h!r "'g!r ""1. !12"

A physical interpretation of g(r) is the number of par-

ticle centers located in a spherical shell between r and r

#dr about a central particle divided by the expected number

of particles given a uniformly distributed particle field.

Based on the definition of the rdf shown in Eq. !11" and the
integral relationship given in Eq. !8", it is easy to show that
the rrdf must satisfy the following integral constraint34

n!
V

h!r "dr!"1. !13"

B. Parametric dependence

Isotropic turbulence is characterized by the fluid density,

&, kinematic viscosity, v , turbulence intensity U!, and ki-
netic energy dissipation rate, (. In dimensionless terms, this
reduces to the turbulent Reynolds number, defined here in

terms of the Taylor microscale

Re)'U!2!15

v(
. !14"

For a monodisperse suspension, the particle phase introduces

three additional variables, viz., the particle density &p , diam-
eter %, and total number N. In terms of dimensionless vari-
ables, these can be expressed as the volumetric loading *
'+%3N/6V , nondimensional size parameter %̂'%/$ and

particle Stokes number St ,see Eq. !1"#. This implies that the
most general form of the rdf in isotropic turbulence can be

expressed functionally as

g! r̂;Re) ,* ,%̂ ,St", !15"

where r̂'r/$ is the dimensionless independent variable and

the variables after the semicolon are the dimensionless pa-

rameters.

C. Simplifying assumptions

The large parameter space shown in Eq. !15" would
make it difficult to interpret and correlate the results from the

numerical simulations. It is, therefore, advantageous to con-

sider the sensitivity of the rdf to each of the parameters, and

search for simplifications where applicable.

FIG. 1. 2d slices of ghost-particle simulations at: !a" St!0.0; !b" St!0.2;
!c" St!0.7; !d" St!1.0; !e" St!2.0; and, !f" St!4.0. Dots correspond to
particle center locations.
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Direct numerical simulation results 
from Reade & Collins (2000)

Clustering of 
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in turbulence 
increases 

collision rates



• SGS mixing is instantaneous in most LES. 
(Decrease grid size.)

• SGS variability does not affect DSD in any 
LES. (Decrease grid size.)

• SGS turbulence affects droplet collision 
rates in very few LES. (Modify collision 
kernel.)

Parameterization of SGS Cloud 
Processes in LES

(and how to improve)



• SGS mixing is instantaneous in most LES. 
(Decrease grid size or estimate SGS PDF.)

• SGS variability does not affect DSD in any 
LES. (Decrease grid size.)

• SGS turbulence affects droplet collision 
rates in very few LES. (Modify collision 
kernel.)

Parameterization of SGS Cloud 
Processes in LES

(and how to improve, v. 1)



How to resolve the small-scale 
variability?

• Decrease LES grid size?

• To decrease LES grid size from 100 m to       
1 cm would require 1012 grid points per 
(100 m)3 and an increase in CPU time of 
1016.

• This is not possible now or in the forseeable 
future. 



How to resolve the small-scale 
variability?

• Decrease dimensionality from 3D to 1D?

• To decrease grid size from 100 m to       
1 cm would require only 104 grid points 
points per (100 m)3.

• This is feasible now.



2 Model Description

In this section we describe ODTLES, an approach for extending the one-dimensional turbulence

model of Kerstein [6] to treat turbulent flow in three-dimensional domains. ODTLES can also be

thought of as a novel LES approach, and we will show how large-scale 3D turbulent motions are

captured by the LES aspects of the model but are strongly coupled to the small-scale turbulent

motions generated by the ODT part of the model.

Before continuing we also note that ODT might be combined with LES in at least two different

ways. One option is to start with the LES equations (derived by spatially averaging the NS equa-

tions), and seek a method for using ODT as a subgrid closure model for these equations. This can

be thought of as a top-down approach, and is denoted LES/ODT. A second option is to begin with

the ODT equations, and then add additional terms so that mutually orthogonal ODT domains might

be coupled together and 3D LES modeling constraints enforced. The ODTLES model described

here follows the latter bottom-up approach.

Figure 1. Illustrative geometry of the ODT and LES subdomains

2.1 Geometry and Numerical Discretization

In ODTLES we discretize our domain of interest in two distinct but interdependent ways. The first

is by a standard set of rectangular control volumes. The second is formed by embedding three,

mutually orthogonal ODT domain arrays within the coarser 3D mesh. This is illustrated in Figure

1 for a simple box-shaped region. Here we see that the overall domain is subdivided into N3
les

uniform LES control volumes, where Nles = 3 is the number of LES-scale subdivisions in each
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LES with 1D 
subgrid-scale model
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droplet evaporation

molecular diffusion

turbulent deformation

saturated parcel

entrainment

1-D explicit mixing model



Turbulent Motion is Represented by Applying Maps



Triplet Map

Each triplet map has a location, size, and time.

• Location is randomly chosen.

• Size is randomly chosen from a distribution 
that matches inertial range scalings.

• Smallest map (eddy) is Kolmogorov scale. 

• Largest eddy is L, usually domain size.

• Eddies occur at a rate determined by the 
large eddy time scale and eddy size range.



1-D Explicit Mixing Model:
water vapor and temperature fields



1-D SGS model for LES

• LES: grid size = 10 m.

• SGS mixing:  Explicit mixing model (EMM) 
with grid size =1 m.

• Microphysics: bin model in each EMM grid 
cell.  

• Collection kernel: increased to represent 
turbulence effects.

• CPU time ~ LES with bin model at 5-m grid 
size.



Summary

• Reducing the dimensionality is an 
established method.

• Removes or reduces the need for SGS 
parameterizations.

• It is very well suited for high-Reynolds 
number turbulent flows when small-scale 
mixing processes are important.





EXTRA SLIDES



Turbulence Physics Microphysics Dimension Domain Grid size Grid points
(Droplets)

LEM mixing bulk condensation 1 10 m 1 m 10
& buoyancy & evaporation -

LEM mixing droplet condensation 1 10 m 1 mm 104

& DSD & evaporation (103)

3D droplet turbulence droplet collision 1 (3) 10 m × - -
triplet map & collisions & coalescence (1 cm)2 (103)

LEM all bin model: droplet 1 10 m 1 cm 102

cond/evap & coll/coal -

1

1-D SGS models for LES
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A 3D triplet map for inertial droplets
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Triplet map vs. 3D turbulence

• Transport: map frequency is set so that fluid transport matches 
turbulent eddy diffusivity.

• Length scale reduction: by matching the inertial-range size-vs.-
frequency distribution of eddy motions, the rate of length scale 
reduction as a function of fluid parcel size is consistent with 3D 
turbulence.

• Intermittency: Random sampling of triplet map occurrences and 
sizes reproduces, qualitatively and to some degree 
quantitatively, intermittency properties of 3D turbulence.

• Mixing: In conjunction with molecular diffusion, the map 
sequence reproduces mixing features.

Strengths



Triplet map vs. 3D turbulence

• Omits effects of time persistence of turbulent motions.

• When diffusive time scales are shorter than turbulent time 
scales, diffusion can suppress scalar fluctuations faster than 
they are generated in 3D turbulence.

• In some cases, turbulence spreads a slow-diffusing scalar faster 
than a fast-diffusing scalar. This is a multi-dimensional effect that 
1D advection cannot capture.

Weaknesses
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Figure 1: (top) Explicit Mixing Parcel Model simulation of isobaric mixing of saturated air
(containing 100 cloud droplets per cm−3 of radius 15 µm) with 1 segment of subsaturated
air 0.25 m in length in a 1D domain 20 m in length, with a dissipation rate of 10−2 m2

s−3. The blue curve is the average subsaturation normalized by its initial value, the red
curve is the std dev of the water vapor mixing ratio, and the green line is 1/e. The e-
folding times for saturation adjustment and decay of water vapor std dev obtained from
the plot are 5.5 s and 1.2 s, respectively. The calculated evaporation and mixing timescales
are 4 s and 1.8 s, respectively. (bottom) Same as top except for mixing of 5 segments of
subsaturated air (each 10 m in length) in a 1D domain 100 m in length. The e-folding
times for saturation adjustment and decay of water vapor std dev obtained from the plot
are 18 s and 20 s, respectively. The calculated evaporation and mixing timescales are 4 s
and 22 s, respectively.

because the mixing time scale is much larger than the evaporation time scale, and therefore
limits (and determines) the grid-averaged evaporation rate. The latter scenario is typical
of mixing in clouds, and is the situation addressed by the paper under review.

2



• SGS mixing is instantaneous in most LES.

• SGS variability does not affect DSD in any 
LES. 

• SGS turbulence affects droplet collision 
rates in very few LES.

Parameterization of SGS Cloud 
Processes in LES
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FIG. 2. (a) Variance vs elapsed time t scaled by a large-eddy time-
scale !L for 1, 3, and 9 initial blobs. (b) As in (a) except that the
elapsed time is scaled by the mixing timescale !d, which depends on
the initial blob size.

FIG. 3. A parcel is represented by a 1D domain in the EMPM. The
parcel’s internal structure evolves due to discrete entrainment events
and turbulent mixing (rearrangement events and subgrid-scale dif-
fusion).

linear eddy simulations of mixing in homogeneous tur-
bulence, see McMurtry et al. (1993).
The example just described demonstrates the rela-

tionship between the entrained blob size and the sub-
sequent scalar variance evolution. In cumulus clouds,
variance is produced by multiple entrainment events.
The in-cloud variance level is thus determined by the
relative rates of variance production by entrainment and
variance decay by mixing.

c. EMPM implementation

By combining the linear eddy model described in
section 3b with the entrainment parameterization de-
scribed in section 3a, the EMPM is able to represent
the effects of entrainment, turbulent deformation, and
molecular diffusion on the internal structure of the par-
cel.
The evolution of a parcel as it ascends from cloud

base is calculated using the EMPM as shown schemat-
ically in Fig. 3. The EMPM’s 1D scalar fields are ini-
tially uniform and set equal to the observed horizontally
averaged cloud base values. As the parcel rises above
cloud base at a specified rate based on observations,

entrainment events occur at irregular intervals. The en-
trained blobs are mixed by the linear eddy model’s re-
arrangement events—which increase the scalar gradi-
ents—and by eddy diffusion.
Many realizations (independent calculations) of par-

cel evolution are made with the EMPM for each set of
parcel parameters in order to provide a precise statistical
representation of the entrainment and mixing processes,
which are both modeled as stochastic processes in the
EMPM. Each realization differs from the others in the
ensemble in its sequence of entrainment intervals and
its set of rearrangement events. Each simulation de-
scribed in the next section consisted of an ensemble of
100 realizations.

4. Simulations

We used the EMPM to simulate entrainment and mix-
ing in Hawaiian cumulus cloud ‘‘main turrets’’ observed

Explicit Mixing Parcel 
Model (EMPM)

LES with 1D 
subgrid-scale model



Explicit Mixing Parcel Model (EMPM)

• The EMPM predicts the evolving in-cloud variability due to
entrainment and finite-rate turbulent mixing using a 1D
representation of a rising cloudy parcel.

• The 1D formulation allows the model to resolve fine-scale
variability down to the smallest turbulent scales (∼ 1 mm).

• The EMPM can calculate the growth of several thousand
individual cloud droplets based on each droplet s local
environment.

‘



EMPM Required Inputs

• Required for a classical (instant mixing) parcel model
calculation:

Thermodynamic properties of cloud-base air

Updraft speed

Entrainment rate

Thermodynamic properties of entrained air

Aerosol properties

• In addition, the EMPM requires:

Parcel size

Entrained blob size, d

Turbulence intensity (e.g., dissipation rate, ε)



The droplet Stokes number is

St = tdγ

where

td =
mp

6πrµ
=

2ρpr2

9µ

is the droplet response time, mp is the droplet mass,
ρp the droplet density, r the droplet radius, and µ
the dynamic viscosity, and

γ = (ε/ν)1/2 = 1/τK

is a global measure of strain, and τK is the Kol-
mogorov time scale.
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