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Hypothesis: Cloud-top entrainment instability

Buoyancy reversal
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Cloud breakup?

Lilly (1968), Randall (1980), Deardorff (1980)
Randall-Deardorff CTEI criterion: Arp = ABe - k(L/Cp)Ar <0
It is not known how CTEI plays a role for marine stratocumulus.



Yamaguchi and Randall (2008, JAS)

CTEI hypothesis is tested with the
idealized LES experiments, in which
turbulence should grow only through
buoyancy reversal.

LES model - SAM (System for
Atmospheric Modeling,
Khairoutdinov and Randall, 2003)

|dealized condition - no forcing, no
radiation, no precipitation, no mean
flow

We are somewhere
aroundthere.

A run with 5 m isotropic grid was
performed after YROS.



An idealized CTEI run with 5 m isotropic grid




Cross-sectional view
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Summary of the results of YR08

e |n the idealized experiments,

e Spontaneous entrainment
develops if Arp < 0,

* Negative buoyancy is produced by
evaporation,

e As aresult, cloud dissipation
takes place.

e CTEI is weak but not negligible.

e [or real marine stratocumulus, the
effect of CTEI could be hidden by
other processes.




Is the cloud dissipation due to buoyancy

reversal?
n n e 0y - virtual potential temperature
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buoyant parcel conservative variables, such as

liquid water potential temperature,
0, and total water mixing ratio, r
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e How does the 6~y diagram of this
run look like?
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Quick summary

e An idealized CTEI run with 5
m isotropic grid shows cloud
dissipation.

e PDF of mixing parameter
suggests active buoyancy
reversal during the
simulation.

Se - e Is the saturation adjustment
still a problem?



My goals

e Study the interactions between
CTEI and radiative cooling
feedbacks.

e Study the possible role of CTEI in
mesoscale convection - Large
domain LES.

e Parameterize CTEI.










A CTEI run with 5-m isotropic grid

e AX=Ay=Az=5m

Saturation adjustment becomes reasonable assumption.

With 3-km-horizontal domain, grid spacings finer than 5 m
become possible, but still.expensive.

e NCAR Bluice

Total grid number: 640 x 640 x 250 ~ 102 million

One 3D snapshot data ~ 1.5 GB for 4 variables (3D data
was saved every 10 second. 1080 data files were generated
~ 1.6 TB.)

4 nodes = 64 processors (run with virtual threads ~ semi
128)

Wall-clock time ~ 7 hours for 3 simulated hours
Computational cost ~ 400 GAUs (relatively cheap)
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