Splash Artifacts from Airborne Aerosol Inlets and Cloud Probes.

Lucas Craig¹, Arash Moharreri¹, Praney Dubey¹, Suresh Dhaniyala¹, Darin Toohey², Dave Rogers³ ¹MAE Department Clarkson University, Potsdam, NY 13699 ²Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, CO ³NCAR/RAF Broomfield, CO 80012

Clarkson UNIVERSITY

Objectives

- To test the new Clarkson Interstitial Inlet (CII) PLOWS
- Characterize the splash artifacts associated with aerosol inlets – PLOWS, VOCALS
- Obtain a splash model by combining CFD modeling with the flight data for different inlet designs – PLOWS, VOCALS
- Use the developed splash model to characterize artifacts in cloud probes

NCAR HIMILI

AM INC.

Clarkson Interstitial Inlet (CII)

NCAR Forward Facing Cone Inlet

SMAI

CII

CII – Objective & Design Concept

Objective: Sampling Interstitial (non-activated) particles in clouds

CII sampling efficiency

Pressure measurement on the inlet

Aerosol measurements: FF03

Aerosol measurements – FF03; $FSSP_{mod}$ (no shroud) used for cloud conc

Aerosol measurements – FF03; FSSP_{std} (standard FSSP) for cloud conc

Aerosol measurements – FF03; CDP used for cloud conc

Closure study with CII inlet considering the three cloud probes

Cll splash artifacts in the presence of drizzle (ff03)

Splash Artifacts (droplet breakup): Aerodynamic vs. Impaction

• Aerodynamic breakup – breakup from nonwall impingement...e.g. velocity differences, pressure gradients, oscillations, etc.

 Droplets Impaction – breakup from wall impingement

Splash model development

- To determine the distribution of particle sizes and velocities generated by impaction of droplets/ice particles on the different inlets
- Assume distributions of particle sizes and velocities as a function of Weber number and combining with CFD modeling, we will predict the observations of the different inlets
 - Determine the optimal size/velocity distribution of splatter particles that best matches the observations of the different inlets.
 - Data to be used: Cloud probes, 2D-C
 - This model might be eventually applicable for determining splatter artifacts in cloud probes

Sample size distributions (UHSAS)

