UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

PLOWS Microphysics

Greg McFarquhar, Bob Rauber and Brian Jewett

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Outline

- Motivation
- Cloud Probes
- Shattering Issues
- Quick-Look Products in Field

university of illinois at urbana-champaign Motivation

- 1. μphysics data, together with other data/modeling studies, will identify & quantify instabilities & forcing mechanisms (frontogenesis, gravity waves) associated with bands & relate μphysical evolution of substructures to mesoscale dynamic forcing
- 2. SDs & bulk μ hysics will be used to
 - i. Input to mesoscale parameterization schemes
 - ii. Knowledge about processes in continental winter cyclones
 - iii. Info for characterizing m-Z relations
 - iv. Data for placing μ physics in context of radar derived structure of bands (spatial structure & air motions)
 - v. Determine how seeder/feeder process evolves within & outside bands
 - vi. Determine role of supercooled water in generation of ice particles near cloud top & in subsequent growth as fall through trowal & warm frontal regions

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Measurement Needs

- Need to measure SDs over complete range of particle sizes
- Need to measure bulk mass (liquid and ice) to ensure consistency with SDs through closure studies
 - Also required for Z-m relations

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Cloud Probes

- FSSP-100 (3 to 45 μm), uncertain in ice
- CDP (3 to 45 μ m), no inlet/shroud
- 2D-C (125 to 800 μm), shattering for D < 200-300 mm?
- 2D-P (200 to 6400 μ m), good for large particles
- CPI (25 to 800 μm), particle images, SDs?
- CSI (measure of bulk water)
- PVM-100 liquid water probe
- PMS King liquid water probe
- TSI 3760 CN counter
- Rosemount icing detector

Shattering Effect: CAS vs CDP vs FSSP

Cloud and Aerosol Spectrometer

Forward Scattering Spectrometer Probe

Cloud Droplet Probe

Shroud Inlet

-Surfaces for shattering

- No inlet or shroud

✓ The same working principle and look-up table

✓ Can we see evidence that shattering on FSSP or CAS amplifies small crystal concentrations?

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Shattering Events

- There is now evidence that 2D-C for D < 200 to 300 μm also contaminated by shattering (Korolev)
 - Shattering events can be identified by interarrival times, # of particles in image and size of fragments

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Correcting for Shattering

- We will use most sophisticated algorithms to remove shattered artifacts from data
 - BUT, there is some controversy as to whether software alone can do this
 - There are new probe tips (that can be easily exchanged) that can minimize impact of shattering

30 April 2008, NRC Convair 580, ISDAC, Fairbanks

Standard OAD-2DC arms

Modified OAD-2DC arms

30 April 2008

Rejected and accepted OAP-2DC images

 τ_{rej} =1000 tics $\Leftrightarrow \Delta X$ =2.5cm

Standard OAD-2DC arms

Modified OAD-2DC arms

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Field Products

- It is critically important that we examine the data after each flight and report any problems that we see with the probes
- We will be making quick look products available on a web site after each flight

