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ABSTRACT

The U.S. Food and Drug Administration recently published a Vibrio parahaemolyticus risk assessment for consumption
of raw oysters that predicts V. parahaemolyticus densities at harvest based on water temperature. We retrospectively compared
archived remotely sensed measurements (sea surface temperature, chlorophyll, and turbidity) with previously published data
from an environmental study of V. parahaemolyticus in Alabama oysters to assess the utility of the former data for predicting
V. parahaemolyticus densities in oysters. Remotely sensed sea surface temperature correlated well with previous in situ
measurements (R2 � 0.86) of bottom water temperature, supporting the notion that remotely sensed sea surface temperature
data are a sufficiently accurate substitute for direct measurement. Turbidity and chlorophyll levels were not determined in the
previous study, but in comparison with the V. parahaemolyticus data, remotely sensed values for these parameters may explain
some of the variation in V. parahaemolyticus levels. More accurate determination of these effects and the temporal and spatial
variability of these parameters may further improve the accuracy of prediction models. To illustrate the utility of remotely
sensed data as a basis for risk management, predictions based on the U.S. Food and Drug Administration V. parahaemolyticus
risk assessment model were integrated with remotely sensed sea surface temperature data to display graphically variations in
V. parahaemolyticus density in oysters associated with spatial variations in water temperature. We believe images such as
these could be posted in near real time, and that the availability of such information in a user-friendly format could be the
basis for timely and informed risk management decisions.

Vibrio parahaemolyticus, a gram-negative, halophilic
bacterium indigenous to coastal estuarine and marine en-
vironments, is the leading cause of vibrio-associated gas-
troenteritis in the United States (12, 31). Vibrio infections
are most common in states bordering the Gulf of Mexico
(15) and are usually associated with the consumption of raw
shellfish, primarily oysters (5, 8, 13, 15). Outbreaks in 1997
in the Pacific Northwest (3) and in 1998 in Texas (9, 11),
Washington, and New York (4, 11) raised the public health
concerns throughout coastal states.

The Galveston Bay, Texas, outbreak in 1998, lasting
from May until June, was the largest V. parahaemolyticus
illness outbreak in the United States, with 416 reported cas-
es (9). These outbreaks prompted the Interstate Shellfish
Sanitation Conference to develop an interim control plan
(ICP) for closing and opening shellfish harvest areas, based
on criteria involving measurement of both total and path-
ogenic V. parahaemolyticus in shellfish (29). The current
ICP utilizes an enumeration procedure using a colony lift
technique and DNA probes that was approved by the Amer-
ican Public Health Association (21) and the U.S. Food and
Drug Administration (FDA) (30). These probes target the
species-specific thermolabile hemolysin gene (tlh) for enu-
merating total V. parahaemolyticus, and the thermostable
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direct hemolysin gene (tdh) that is associated with patho-
genicity (25, 26).

Quantitative data on environmental levels of V. para-
haemolyticus in oysters and water have shown a positive
correlation of V. parahaemolyticus densities with water
temperature, and thus an apparent seasonality with higher
levels during warmer months (5, 10, 12). Salinity is also
known to affect V. parahaemolyticus densities (5, 10, 20).
Possible links between V. parahaemolyticus incidence and
other environmental parameters, such as turbidity and chlo-
rophyll, are less clear (34). Nevertheless, if one can suitably
determine the quantitative effect of environmental param-
eters favorable for proliferation of this bacterium and then
effectively monitor these parameters, the risk of illness
could be better predicted and managed. With this in mind,
the FDA formulated a risk assessment model in which lev-
els of V. parahaemolyticus in oysters at harvest are pre-
dicted based on water temperature. The FDA assessment
was structured to assess V. parahaemolyticus on a regional
and seasonal basis. Estimated distributions of water tem-
perature were obtained based on historical (1987 to 1997)
measurements from selected fixed site National Oceano-
graphic and Atmospheric Administration (NOAA) moni-
toring stations and buoys (31). A principal objective of the
FDA assessment was to determine the relative importance
of the environment and various postharvest practices on
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consumer risk and to make comparisons between different
regions and seasons. For this purpose, the use of historical
data on water temperature was desirable and, on average,
the model-predicted V. parahaemolyticus levels based on
the fixed site temperature measurements generally agreed
with the levels determined by microbiological examination.
However, many oyster-harvesting areas are far from fixed-
site monitoring stations (i.e., NOAA buoys or similar mon-
itoring stations), and such fixed site data probably do not
represent the full range of temperature variations that occur
within and across specific oyster-harvesting areas. This is
a relevant issue to be addressed if the approach underlying
the FDA model is to be utilized for forecasting. Further-
more, the potential for improvements in accuracy of fore-
casting exist if other determinant factors (e.g., salinity, tur-
bidity, chlorophyll, etc.) substantially influence V. parahae-
molyticus levels, are spatially variable, and can be moni-
tored via remote sensing technology.

Remote sensing is currently being used to describe and
monitor a variety of systems from local to global scales (7,
19). For example, a study described by Lobitz et al. (1, 17,
18, 24) used retrospective remote sensing data to demon-
strate a relationship between certain ocean parameters (sea
surface temperature [SST] and sea surface height) and chol-
era (Vibrio cholerae) incidence in Bangladesh. In a similar
fashion, remotely sensed (RS) data may prove useful to
better elucidate and estimate the quantitative effect of fac-
tors other than SST in determining V. parahaemolyticus
densities in U.S. oysters and provide a timely, user-friendly
format for risk management. In the present study, we dem-
onstrate the feasibility of this approach by analyzing ar-
chived RS data on water temperature, turbidity, and chlo-
rophyll with previously published data of V. parahaemo-
lyticus densities in Alabama oysters.

MATERIALS AND METHODS

In situ data. Archived data of biweekly oyster sampling
from March 1999 to September 2000 for sampling sites at Dau-
phin Island Bay Reef (30�16�180�N, 88�05�560�W) and Cedar
Point Reef (30�18�262�N, 88�07�519�W) were obtained from the
FDA, Gulf Coast Seafood Laboratory, Dauphin Island, Alabama.
The following variables were used in this study: total V. para-
haemolyticus per gram of shellfish meat (geometric mean of two
replicate samples), water temperature, and salinity. These data,
collected by DePaola et al., were reported in a previous commu-
nication (12). The present study compared these V. parahaemo-
lyticus density and environmental data with archived RS data.
Thus, only in situ observations recorded at times for which RS
data were available were used. This occurred for 55 of 78 in situ
observations.

RS data. SST (33) and turbidity (beam attenuation) (14) de-
rived from NOAA’s Advanced Very High Resolution Radiometer
(AVHRR) as well as ocean color (chlorophyll a) (28) determined
from Sea-Viewing Wide Field-of-View Sensor data (27), are all
characterized by a pixel-to-pixel ground sample distance of 1.1
km. SST derived from National Aeronautics and Space Admin-
istration’s (NASA’s) Moderate Resolution Imaging Spectrometer
(2) aboard the Aqua (EOS PM) satellite was used to generate
Figures 2 and 3. These estimates of RS data were provided by the
Naval Research Laboratory, Stennis Space Center, Mississippi, in

processed form via an automated processing system (22). The au-
tomated processing system contains programs for sensor calibra-
tion, atmospheric correction, geometric registration, and product
algorithms (22). Pixel values from the processed files, concurrent
spatially and temporally (within 2 h) with in situ data, were ex-
tracted using the Environment for Visualizing Images software
package (ENVI, version 3.6, Research Systems, Inc., Boulder,
Colo.).

Statistical analyses. Effects of environmental parameters on
total V. parahaemolyticus densities were analyzed by regression
analysis. Effects of water temperature and salinity were analyzed
by both simple and multiple regressions. The significance of po-
tential effects of chlorophyll and turbidity was ascertained by a
two-stage procedure in order to minimize the impact of missing
observations. First, residuals (difference in observed versus ex-
pected) of a multiple regression of V. parahaemolyticus densities
against both water temperature and salinity were calculated. These
residuals were then considered the dependent variable in simple
regressions against chlorophyll and turbidity, respectively. The re-
lationship between in situ water temperature measurements and
the corresponding RS data was determined by Pearson correlation.
Predictions of spatial variation of mean V. parahaemolyticus den-
sities due to variations in water temperature were obtained by
combining AVHRR water temperature data with predictions de-
rived from the FDA risk assessment model (31). Specifically, the
FDA risk assessment model was run in replicate simulations, with
different random number seeds, at fixed water temperature incre-
ments. An interpolating regression was then fit to the simulation
output to summarize relationship between predicted mean V. par-
ahaemolyticus density and water temperature. For the statistical
analyses of V. parahaemolyticus densities versus environmental
parameters, half the limit of detection was substituted when V.
parahaemolyticus densities were below the limit of detection (10/
g) and density estimates were log transformed. All statistical anal-
yses were conducted using the SPSS (SPSS Inc., Chicago, Ill),
SAS statistical software (SAS Institute, Cary, N.C.), or a combi-
nation thereof.

RESULTS

SST derived from AVHRR data and in situ bottom wa-
ter temperature measurements at the two sampling stations
near Mobile Bay, Alabama, correlated well (R2 � 0.86, P
� 0.01). Generally, SST was slightly higher than bottom
water temperature, although this pattern was reversed on
rare occasion. Overall, the estimated annual average tem-
peratures based on these data were in close agreement
(23.05�C for AVHRR versus 22.94�C for in situ). Table 1
presents the summary statistics for the in situ and RS en-
vironmental parameters, as well as actual and predicted
mean log total V. parahaemolyticus density, based on the
FDA risk assessment model (31) and the two water tem-
perature measurements. The following model was used to
derive these predictions: mean log V. parahaemolyticus per
gram � �0.84 � 0.11 	 (water temperature). The predic-
tions based on the in situ data (1.69 log V. parahaemoly-
ticus per g) and RS data (1.71 log V. parahaemolyticus per
g) agreed well with each other (Fig. 1). The observed V.
parahaemolyticus densities were slightly higher (1.94 log
V. parahaemolyticus per g) than were either set of predic-
tions, and the observed log V. parahaemolyticus densities
were more variable. Greater variability of observed densi-
ties is expected because these model predictions are of
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TABLE 1. Total Vibrio parahaemolyticus density in oysters and
environmental parameters, collected in situ or via remote sensinga

Variable
No. of

samples Range Mean SD

Actual log total V. para-
haemolyticusb 55 0.70–3.85 1.94 0.85

Predicted log total V. par-
ahaemolyticus (IS)c 55 0.26–2.77 1.69 0.71

Predicted log total V. par-
ahaemolyticus (RS)d 49 0.43–2.89 1.71 0.76

IS salinity (CFU/g
shellfish) 55 8.70–29.70 21.29 5.24

IS water temp (�C) 55 9.90–32.70 22.94 6.45
RS SST (�C) 49 11.48–33.80 23.05 6.95
RS chlorophyll (mg/m3) 10 2.45–20.16 9.09 5.65
RS turbidity (m�1) 34 2.88–49.60 11.55 8.68

a SD, standard deviation; IS, in situ; RS, remotely sensed; SST,
sea surface temperature.

b Replicate samples averaged together.
c Based on IS temperature data.
d Based on RS SST data.

FIGURE 1. Predictions of mean log V. parahaemolyticus, based
on remotely sensed (RS) and in situ (IS) temperature data versus
observed log V. parahaemolyticus densities, averaged over both
Cedar Point Reef and Dauphin Island Bay sampling sites.

FIGURE 2. NASA’s Moderate Resolution Imaging Spectrometer (MODIS) SST image of SST along the Louisiana, Mississippi, and
Alabama coasts on 4 May 2004.
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FIGURE 3. Mean V. parahaemolyticus per gram prediction image, based on RS MODIS SST values for 4 May 2004.

mean log V. parahaemolyticus per gram, based on water
temperature alone. The predictions do not include the effect
of additional environmental factors (e.g., salinity) or ac-
count for the natural sample-to-sample variability exhibited
in samples collected under identical conditions. Correlation
between the observed and predicted values was similar ir-
respective of whether predictions were based on the in situ
(r � 0.692) or the RS (r � 0.673) water temperature data.

A series of regressions were performed to evaluate
whether or not some of the differences between the obser-
vations and temperature-based predictions were significant-
ly related to the other environmental parameters (salinity,
turbidity, chlorophyll). First, consistent with what is already
known about the effects of temperature (31) and salinity (5,
20), a multiple regression of log V. parahaemolyticus per
gram against both RS SST and salinity parameters showed
that both were significant (P � 0.05). The effect of salinity
was determined to be quadratic. The linear regression mod-
el that best fit the data was mean log V. parahaemolyticus
per gram � �1.904 � 0.084 	 (RS SST) � 0.242 	
(salinity) �0.006 	 (salinity2). Residuals from the fit of
this equation were then used to assess the significance of
turbidity and chlorophyll. The residuals of the regression
fit were defined as the observed minus the predicted values.

A positive residual corresponds to an observed level greater
than that predicted based on water temperature and salinity.
These residuals did not show a significant relationship with
RS turbidity, but there was a significant correlation (R2 �
0.55, P � 0.05) with RS chlorophyll. The association of
the residuals with RS chlorophyll was positive. Occasions
when observed log V. parahaemolyticus per gram were
greater than predicted corresponded to higher levels of
chlorophyll, and this relationship appeared consistent across
both sampling sites. However, these observations are based
on a very limited number of samples.

Despite some differences between remotely sensed and
in situ bottom temperature measurements, the spatial vari-
ations in water temperature across a given region or estuary
on a given day appears to be of equal or greater magnitude.
For example, RS SST data for 4 May 2004 are shown in
Figure 2. Here, one can see a variation of between 22 and
25�C for oyster-harvesting areas across Alabama, Missis-
sippi, and Louisiana. By linking image data such as this
with model-based predictions, the effect of this spatial var-
iation on predicted V. parahaemolyticus densities can be
effectively depicted. Based on the FDA risk assessment
model, the relationship between mean V. parahaemolyticus
per gram and water temperature is summarized by the equa-
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tion: mean V. parahaemolyticus per gram � 0.871 	
exp[0.2648 	 (water temperature)]. Predictions for oyster
harvesting areas across Alabama, Mississippi, and Louisi-
ana on 4 May 2004 are shown in Figure 3, based on the
SST data and the prediction equation.

DISCUSSION

This study investigated the utility of remote sensing
data for prediction of V. parahaemolyticus levels in raw
oysters at harvest. RS SST data were found to relate to in
situ temperature data with relatively high correlation, and
observed systematic differences were small and consistent
with expectations (23). Thus, predictions based on RS wa-
ter temperature appear feasible now and provide much
greater coverage than available with sporadically located
weather buoys. Additionally, the imagery provides a user-
friendly format for the interpretation and use of risk as-
sessment outputs for risk management. Cloud cover and
ground clutter are major limitations of this approach and
interfere with turbidity and chlorophyll measurements more
often than with SST data. However, the limited archived
data available for chlorophyll did show significant corre-
lation with V. parahaemolyticus levels and merits further
examination. Approaches that may be used to mitigate the
effect of remote sensing data gaps include compositing data
collected over multiple previous days and/or statistically in-
terpolating, both spatially and temporally (6, 16). Use of
additional sources of data, including buoys and vessels,
may also help overcome the remote sensing data gaps.

Factors such as salinity and air temperature that affect
V. parahaemolyticus levels at harvest and postharvest, re-
spectively, were not included. The RS data–based predic-
tions shown in Figure 3 do not include effects of salinity,
and predictions have not been extended to include posthar-
vest levels. Currently, there are no data sources (AVHHR
or other) that can provide information on these two param-
eters with the same spatial resolution as for water temper-
ature. Whereas daytime (e.g., mid-day) air temperatures
may be relatively constant over large areas (e.g., 100 km2

or more) on a given day and could be obtained from fixed
sites (e.g., airports), salinity is more spatially variable. Ab-
sent a data source for salinity with spatial resolution equal
to or better than that of water temperature, RS water tem-
perature–based predictions are either contingent on speci-
fied salinity levels, or such predictions can be averaged over
the likely distribution of salinity in oyster harvesting areas,
considered independent of location. The latter ‘‘averaging’’
approach was adopted in the FDA risk assessment model,
and hence the basis on which Figure 3 was constructed.
This approach could be improved if a source of information
for spatial variation of salinity were available. Alternative-
ly, a range of salinity-specific predictions may be of value
in the absence of such information.

In the re-analysis of previously published data on V.
parahaemolyticus in Alabama oysters, differences in V.
parahaemolyticus levels not attributable to differences in
temperature and salinity were found to be significantly as-
sociated with RS chlorophyll. Although this finding is
based on a very limited number of observations, the exis-

tence of a positive association of V. parahaemolyticus den-
sities with chlorophyll suggest a relationship between V.
parahaemolyticus and phytoplankton, the primary source of
chlorophyll in aquatic environments. Phytoplankton are a
major component of the oyster diet, and attachment of V.
parahaemolyticus to some species of phytoplankton may
occur but has not been reported. Zooplankton also feed on
phytoplankton and vibrios including V. parahaemolyticus;
these have been shown to attach and multiply on copepods
(1, 17, 18, 24, 34). This could increase V. parahaemolyticus
densities in the waters overlying oyster reefs.

On the other hand, RS turbidity showed a nonsignifi-
cant relationship with V. parahaemolyticus after correcting
for the effects of temperature and salinity. This observation
is not consistent with the findings of Watkins and Cabelli
(34), who found that V. parahaemolyticus was highly cor-
related with turbidity in Narragansett Bay, Rhode Island. It
may be that RS turbidity is not a sufficiently accurate mea-
sure of actual (i.e., in situ) turbidity or that the cause or
composition of turbidity of the Alabama waters in the pres-
ent study differed from that in the Narragansett Bay study.
For example, freshwater runoff, resuspension of bottom
sediments, and blooms of phytoplankton or zooplankton
can all contribute to turbidity and yet have different impacts
on V. parahaemolyticus levels. It is also possible that, given
the range of turbidity variations at the Alabama sampling
sites, the effect of turbidity was too small to be effectively
estimated based on the limited number of observations
available from the archived data.

Availability of RS data to investigate potential corre-
lations of chlorophyll and turbidity to V. parahaemolyticus
densities was found to be problematic. RS chlorophyll and
turbidity measurements are reliant on sunlight to produce
accurate reflectance data, and even slight cloud coverage
over a particular area of interest at the time of satellite pass
over can yield invalid data or none at all. For example, at
least one RS data product concurrent spatially and tempo-
rally was available for 55 (71%) of the 78 in situ obser-
vations. Lack of data was usually due to cloud cover, but
on three occasions, data were missing due to sensor out-
ages. Of those 55 occasions for which RS data were avail-
able, SST, turbidity, and chlorophyll were available on 50,
34, and only 10 occasions, respectively. SST was the most
reliable data product; it is based on emitted (not reflected)
thermal infrared energy, and therefore not as vulnerable to
effects by clouds as are chlorophyll and turbidity measure-
ments. These limitations of the data made statistical eval-
uation of the importance of turbidity and chlorophyll on V.
parahaemolyticus density difficult because of the reduction
in the sample size.

Spatial predictions such as that shown in Figure 3 can
potentially be obtained in near real time. One can and
should expect that temporal variations in conditions (i.e.,
from one day or week to the next) are equally important,
and that the spatial pattern of risk across different oyster-
harvesting areas is not constant. The use of RS data may
also be of value for retrospective investigation of past out-
breaks such as that due to oysters harvested from Galveston
Bay in 1998 or the more recent outbreak in Alaska in 2004.
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With accurately specified and estimated prediction models,
RS data can be used for risk assessment, both to investigate
past outbreaks and illness patterns and to provide a basis
for forecasting and rapid, near real-time dissemination of
pertinent information for risk management.
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